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1 Introduction

In 2004 I defined and put on line a simple PSO with random topology. More pre-
cisely the communication topology (infonetwork) was randomly modified after
an iteration if there had been no improvement of the global best.

However, although the C code is freely available from now several years, and
although it has been published in 2005 in my book [2] with some explanations
(and in 2006 in the English translation [3]), it appears that some people not
understood well the method that is used. Hence this short paper, in which I
simply explain how I found it, starting from my first bad idea to a more effective
one.

2 Method 1: the very first (and bad) idea

Let S = {Py,..., Ps} be the swarm, where each P; is a particle. In classical
local best PSO, each particle is informed by K particles, including itself. Usual
values are swarm size S = 20, and neighbourhood size K = 3. Note that by
“neighbourhood” T actually mean “informants”, so that there is no confusion: it
is easy to understand “a particle informs itself”; as saying “it is a neighbour of
itself” sounds a bit strange.

Now, if we want to define a random neighbourhood for particle P;, it seems
natural to choose at random K particles in S (according to an uniform dis-
tribution). However, doing just that, we are not sure P; is informed by itself,
which seems quite ridiculous. Moreover, it is well known that a fixed topology
in which each particle does not inform itself is not very effective. So it does not
seem to be a good idea even for a random topology.

So, it is better to define the random set of informants of P; thanks to two
rules:

e it contains P;

e the K — 1 other particles are chosen at random in S.

Why not in S — {P;}7 Because it seems experimentally that it is better that a
particle may sometimes have no informant at all, except itself. So it can perform



’ Nb of informants | Probability

1 0.0025
2 0.1425
3 0.855

Table 1: Probability distribution of the number of informants, for S = 20 and
K=3

local search around its best known position. By choosing in .S, this situation
occurs with a probability equal to 1/S%~1. By choosing in S — {P;}, of course
it never happens.

It is clear that the maximum number of informants (i.e. neighbours and the
particle itself) is equal to K, but, more precisely, we can define the probability
distribution of the number of informants, as shown on Table 1, for S = 20 and
K = 3. The general formula is given in Annexe 6.1.

This distribution is not satisfying. One the one hand I want a mean value
around 3 (here 2.85), for I know it is better for multimodal problems. But
on the other hand I also want that sometimes the particle may have a lot of
informants. In other words I want a distribution in which all values between 1
and S have a non null probability, so that all possible topologies may appear,
between “all particles are independent” and “each particle is informed by the
whole swarm”, but with a small mean value. It is impossible with this method,
as we can see for example on Figure 1 where K = S: in order to obtain a non
null probability for big values, the mean has also to be quite big.

3 Method 2

Of course, it is always possible to directly manipulate the distribution, but such
a method needs some additional parameters. There is a simpler way: instead
to choose at random who informs who, I can choose at random who is informed
by whom. The final result is a nice distribution of the sum of S — 1 independent
binary Bernouilli variables, as shown on Figure 2 (see the exact formula in
Annexe 6.2). Note that the mean value is now greater than K (2.9 for K = 2,
3.71 for K = 3). And although it is not visible on the figure, the probability is
never equal to zero.
Let us explain how it is done in practise:

e step 1 - we built a S x S matrix L. We immediately set L (¢,3) = 1, i.e.
the whole diagonal (each particle informs itself)

e step 2 - for each line i we draw at random (uniform distribution on
{1,...,S}) K numbers ki, ...,kx, and we set L (i,k,) = 1. Of course it
may happen that the same element is set to 1 several times
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Figure 1: Probability distribution of the number of informants with Method 1,
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e step 3 - then we consider for each particle j the column L (., 5). If L (4,5) =
1, it means that particle P; informs particle P;. Note that for Method 1
we consider in fact for each particle j the line L (j,.).

It is interesting to note that this method is formally equivalent to a more recent
one, called “Stochastic Star” [5] (see Annexe 6.3).

4 Method 3

Although we do have with Method 2 a complete range of possible neighbourhood
sizes, the probability to have a big one is very small. Also we can take this
opportunity of using a random topology to try to remove the arbitrary parameter
K.

In the above description of the Method 2 , in Step 2 we can replace the
constant K by a random one. After all it would be just an application of the
usual rule of thumb “If you don’t know, flip a coin”.

What happens, for example, if we choose it at random uniformely in {1, ..., S} ,i.e.
K = N(1,5)?7 And with a “triangular distribution”, i.e. K = 7 (1,5) =
(NM(1,8)+N(1,5))/2 7 The exact distribution formulas for the number of
informants are quite complicated, and it is easier to simply perform some sim-
ulations. As we can see on Figure 3 the results are very similar, and not that
good: the mean value is far too high.

This is nevertheless an interesting result: using foo much randomness is
not necessarily a good idea, for the final distribution is just quite similar to a
Gaussian one. So Method 3 is not a good one, and there is still room for a
improvement of Method 2 (i.e. with a bit higher probabilities for big neighbour-
hood size values).

5 When to modify the topology?

5.1 Criterion 1: no improvement

If the best know solution has not been improved after a whole iteration (i.e.
after S fitness evaluations), then the infonetwork is redesigned. Note that the
combination Method 2 + Criterion 1 is the one that is used in the basic PSO
OEP 0 [2], and later in Standard PSO 2006 (available on the Particle Swarm
Central [7]).

5.2 Criterion 2: enough time

There is a theoretically better way, based on a rumour spread model. In short
any information found by a particle should have time to reach any other one.
Clearly it is depending on the diameter of the graph of the current infonetwork.
However exactly computing it is quite time consuming. An approximation can
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be used: if the number of links is N then the network is redesigned after N/2
iterations.

Actually this method is used in the parameter free PSO called TRIBES [1,
2, 3] although that in this precise algorithm redesigning is not done at random.

6 Annexe

6.1 Distribution formula for Method 1

When drawing K times a number between 1 and S the total number of possible
sequences that contains n different numbers is given by

n!

N (S,K,n) = SK(?—W ; (=)t iKZ,!(i

n—i)!
or equal to 0 in the three following particular cases

n=>0
n>K
n>_98

This can be found by using the recurrence relations

N(S1,1) = 1
N(S,K,n) = nN(SSK—-1,n)+(S—n+1)N(S,K—-1,n—1)

However there is a small difficulty here, for a particle informs itself. If we
consider particle 1, for example, it means the first element of all “favorables”
sequences must be equal to 1. And also the length of each sequence is not K
but K — 1. So we consider now three kinds of sequences of K — 1 values:

e the ones that does not contain 1, and with n — 1 different values. Their
number is Ny =N (S—-1,K —1,n—1)

e the ones that contain n different values. Their numberis No = N (S, K — 1,n)

e the ones that contain n different values, but not 1. Their number is
N3=N(S—1,K—1,n)

The total number of “favorable” sequences is then Ny = N7 + Ny — N3. As the
total number of sequences is S¥ 1, the distribution is given by Np/SK~1. For
K = 3 we have the following table 2. For biggest values, the easiest way is to
write a small program.



Number of informants | Probability

1 &
35‘5’721
3 (87122572)

Table 2: Distribution of probability for Method 1, K =3

6.2 Distribution formula for Method 2

Let us consider for example the first particle Py, i.e. the first column of the
matrix L. By definition, the probability to have 1 in line 1 is 1 (the particle
informs itself). For the S — 1 other lines, the probability is

1 K
-3

So the random variable “number of informants of P;” is simply

S—1
Y=1+) X; (1)
1

where X is a Bernouilli random variable of parameter p. Its distribution is
then given by adapting the classical formula, and we find

prob (Y = n) = -1 (f;) (1 - [S()S (2)

6.3 Formal equivalence between Method 2 and Stochastic
Star

In [5] the “external” informants of a given particle P; are chosen according to
a probability law. Each other particle P; informs P; with a probability p, and
the particle informs itself with a probability 1. The authors call this method
“Stochastic Star”. In practice, a random number r is drawn from the uniform
distribution A (0,1). If » < p then P; indeed informs P;. If we code “P; informs
P; “ by 1, and the contrary by 0, we can see that the random variable “number
of informants” is exactly the one defined by Equation 1. So its probability
distribution is the same than for Method 2 when

pl(l;)K (3)

On the one hand this probability threshold p can be directly set to any value,
so the method is a bit more flexible. However, on the other hand, with formula
7?7 we better see why and how p is depending on S and K. For example, as we
know S = 20, K = 3 is quite effective for multimodal problems, it means that



for such problems we should choose, with the Stochastic Star approach, S = 20,
p = 0.14.

in,

Note that though the way information is used by a given particle is different
say, Standard PSO 2006 and in[5]. In Standard PSO 2006 only the best

informant is kept, as in[5] the velocity update equation contains a weighted
combination of all informants, for it is a kind of FIPS (Fully Informed Particle
Swarm) [4, 6].
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