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A mini-benchmark

You have designed a nice brand new algorithm. Before to run it on a large (un-
biased) benchmark, you may try it on this mini-benchmark of four problems. It
has been carefully chosen to be deceptive, in average, if the algorithm is not well
�balanced� or is biased in favour of a diagonal of the search space.

Tripod

The function to be minimised is ( [2])

f = 1−sign(x2)
2 (|x1|+ |x2 + 50|)

+ 1+sign(x2)
2

1−sign(x1)
2 (1 + |x1 + 50|+ |x2 − 50|)

+ 1+sign(x1)
2 (2 + |x1 − 50|+ |x2 − 50|)

(1)

with

sign (x) = −1 if x ≤ 0
= 1 else

The search space is [−100, 100]2. The solution point is (0,−50), where f = 0.
Here, we allow 104 �tness evaluations and a run is said to be successful if it �nds
a �tness less than 0.0001.

Figure 1: Tripod function. Not that di�cult, but may be deceptive for algorithms
that are easily trapped into a local minimum
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Rosenbrock F6

f = 390 +

10∑
d=2

(
100

(
z2d−1 − zd

)2
+ (zd−1 − 1)

2
)

(2)

with zd = xd − od. The search space is [−100, 100]10. The o�set vector O =
(o1, · · · , o10) is de�ned by its C code below. The solution point is O + (1, . . . , 1)
where f = 390. There is also a local minimum at (o1 − 2, · · · , o10), where f = 3941.
Here, we allow 105 �tness evaluations and a run is said to be successful if it �nds
a �tness less than 0.01. This problem is coming from the CEC 2005 benchmark
and is di�cult for algorithms that reduce too quickly the searched area space, and
particularly discriminant in terms of success rate.

O�set (C code)

static double o�set_2[10] = { 81.0232, -48.395, 19.2316, -2.5231, 70.4338, 47.1774,
-7.8358, -86.6693, 57.8532, -9.9533}

Compression spring

This is a simpli�ed version of a more di�cult problem (see[4, 1, 3]). There are
three variables

x1 ∈ {1, . . . , 70} granularity 1
x2 ∈ [0.6, 3]
x3 ∈ [0.207, 0.5] granularity 0.001

and four constraints

g1 :=
8CfFmaxx2

πx3
3

− S ≤ 0

g2 := lf − lmax ≤ 0
g3 := σp − σpm ≤ 0

g4 := σw − Fmax−Fp

K ≤ 0

with

1The Rosenbrock function is indeed multimodal as soon the dimension is greater than three
[5].
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Cf = 1 + 0.75 x3

x2−x3
+ 0.615x3

x2

Fmax = 1000
S = 189000
lf = Fmax

K + 1.05 (x1 + 2)x3
lmax = 14

σp =
Fp

K
σpm = 6
Fp = 300

K = 11.5× 106
x4
3

8x1x3
2

σw = 1.25

and the function to be minimised is

f = π2x2x
2
3 (x1 + 2)

4
(3)

The best known solution is (7, 1.386599591, 0.292), which gives the �tness value
f∗ = 2.6254214578. For the results given on the table 1, a penalty method has been
used to take the constraints into account, but any method is of course acceptable.
Here, we allow 2 × 104 �tness evaluations and a run is said to be successful if it
�nds a �tness f so that |f − f∗| ≤ 10−10. Because of the granularities this problem
may be deceptive for some algorithms.

Gear train

For more details, see [4, 3]. The function to be minimised is

f (x) =

(
1

6.931
− x1x2
x3x4

)2

(4)

The search space is {12, 13, . . . , 60}4. There are several solutions, depending
on the required precision. Here, we used 10−13. So, a possible solution is
f∗ = f (19, 16, 43, 49) = 2.7 × 10−12. We allow 2 × 104 �tness evaluations, and
a run is then said successful if it �nds a �tness f so that |f − f∗| ≤ 10−13. In
this problem, only �integer� positions are acceptable. A lot of algorithms are not
comfortable with such constraints.

Reasonable results

Some results with two PSO variants are given in the table 1. We say that an
algorithm A �beats� an algorithm B it the mean success rate of A is greater than
the one of B. Two cases:

• your algorithm does not beat the algorithm 1, i.e. SPSO-2007 (Standard
PSO 2007). Forget it.
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Table 1: Success rates over 100 runs

Algorithm 1 2
Variable PSO (similar to SPSO-2007 but with

bi-directional variable ring topology and
Function SPSO-2007 variable swarm)
Tripod 50% 94%

Rosenbrock F6 82% 75%
Compression spring 35% 72%

Gear train 6% 22%
Mean 43.25% 65.5%

• it beats Algorithm 2. It is really promising. It is worth running it on a more
complete benchmark. Be sure this benchmark is non biased (the solution
point must not be on a diagonal of the search space)
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