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A mini-benchmark

You have designed a nice brand new algorithm. Before to run it on a large (un-
biased) benchmark, you may try it on this mini-benchmark of four problems. It
has been carefully chosen to be deceptive, in average, if the algorithm is not well
“balanced” or is biased in favour of a diagonal of the search space.

Tripod
The function to be minimised is ( [2])
o= 2 (] + fap + 50))

+1+sz:92n(932) L=stgn(@) (1 4 |gy + 50| 4 |2 — 50]) (1)
AR (9 4 (g — 50[ + |z — 50])

with

sign(z) = -1 if x<0
1 else

The search space is [—100, 100]2. The solution point is (0, —50), where f = 0.
Here, we allow 10* fitness evaluations and a run is said to be successful if it finds
a fitness less than 0.0001.

Figure 1: Tripod function. Not that difficult, but may be deceptive for algorithms
that are easily trapped into a local minimum



Rosenbrock Fé6

10

F=390+3%" (100 (221 — 20)* + (s — 1)2) (2)

d=2

with zq4 = x4 — 04. The search space is [—100, 100]10. The offset vector O =
(01,---,010) is defined by its C code below. The solution point is O + (1,...,1)
where f = 390. There is also a local minimum at (01 — 2, -+ ,010), where f = 394!.
Here, we allow 10° fitness evaluations and a run is said to be successful if it finds
a fitness less than 0.01. This problem is coming from the CEC 2005 benchmark
and is difficult for algorithms that reduce too quickly the searched area space, and
particularly discriminant in terms of success rate.

Offset (C code)

static double offset_2[10] = { 81.0232, -48.395, 19.2316, -2.5231, 70.4338, 47.1774,
-7.8358, -86.6693, 57.8532, -9.9533}

Compression spring

This is a simplified version of a more difficult problem (see[4, 1, 3]). There are
three variables

z1 € {1,...,70} granularity 1
2 € [0.6,3]
x3 € [0.207,0.5] granularity 0.001

and four constraints
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with

IThe Rosenbrock function is indeed multimodal as soon the dimension is greater than three

[5]:



Cr = 14075 %2-+0.6153
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Frae = 1000
S = 189000
Iy = fmee 1105z +2)as
lmaz = 14
o = b
opm = 6
F, = 300
4
K = 115 %100
a:la:z
ow = 125

and the function to be minimised is

f=n? w273 (21 + 2) 3)
4

The best known solution is (7,1.386599591,0.292), which gives the fitness value
[ =2.6254214578. For the results given on the table 1, a penalty method has been
used to take the constraints into account, but any method is of course acceptable.
Here, we allow 2 x 10* fitness evaluations and a run is said to be successful if it
finds a fitness f so that |f — f*| < 10719, Because of the granularities this problem
may be deceptive for some algorithms.

Gear train

For more details, see [4, 3]. The function to be minimised is

2
1 12

= (— - 4
1 (@) (6.931 a:3:c4) )
The search space is {12,13,..., 60}4. There are several solutions, depending

on the required precision. Here, we used 1073, So, a possible solution is
f* = £(19,16,43,49) = 2.7 x 107!2. We allow 2 x 10* fitness evaluations, and
a run is then said successful if it finds a fitness f so that |f — f*| < 10713, In

this problem, only “integer” positions are acceptable. A lot of algorithms are not
comfortable with such constraints.

Reasonable results

Some results with two PSO variants are given in the table 1. We say that an
algorithm A “beats” an algorithm B it the mean success rate of A is greater than
the one of B. Two cases:

e your algorithm does not beat the algorithm 1, i.e. SPSO-2007 (Standard
PSO 2007). Forget it.



Table 1: Success rates over 100 runs

Algorithm 1 2
Variable PSO (similar to SPSO-2007 but with
bi-directional variable ring topology and

Function SPS0-2007 variable swarm)
Tripod 50% 94%
Rosenbrock F6 82% 5%
Compression spring 35% 2%
Gear train 6% 22%
Mean 43.25% 65.5%

e it beats Algorithm 2. It is really promising. It is worth running it on a more
complete benchmark. Be sure this benchmark is non biased (the solution
point must not be on a diagonal of the search space)
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