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Tribalism : it was a choice. I was beginning to think it was the good one. At least the only tenable one.

Francis Valéry

The Fifth tribe

Towards an ultimate program

Ideally, the opening remark for a completely autonomous Particle Swarm Optimization (PSO) process should be the following: In the beginning, there was only one. That is, it should be able to find a solution beginning with a single particle adding and removing other particles intelligently, on its own. 

Until now, even for adaptive PSO versions, it was necessary not only to describe the problem to be solved, but also to provide some instructions about how to solve it, such as, “Begin with twenty particles,” “Use a circular neighborhood of size three,” or “Weight the velocity with a time-decreasing coefficient according to the following rule… ” 

In classical PSO, the description of the problem typically provides the following. The search space (for simple cases, acceptable range values for each dimension); how to evaluate the function to be minimized (we will use the phrase objective function throughout this paper) on each point of the search space; and finally, the maximum admissible error. The necessity is obvious: the program cannot guess what the problem is, or the desired degree of accuracy! In addition, in order to avoid infinite loops if the process does not converge, it is wise to provide a safeguard ; either a maximum number of evaluations or a maximum computing time.

 The above should be sufficient for completely defining the method. In other words, if the method includes rules governing the behaviour of the swarm structure at each step as well as how the particles should act based on the collected information, then this will be a complete description of the process.

Of course, these rules are also roundabout ways to tell the program how it has to work., for example : "Always begin with just one particle " or "In that case, add a particle at random". However, such rules are truly useful when they do not need manual tuning by the user for every problem definition, that is if these are sufficiently robust and general enough to satisfy all our practical needs. It would be easy to “hard-code” a rule of thumb like “Always use twenty particles,” but experience shows that such simple rules, though may produce excellent results for some problems; can generate extremely bad results for other problems. Such rules are not robust. 

The aim of this paper is to present a version of PSO that can find the parameters on its own, and yet can produce good enough results. What is good enough ? For our purpose, we will adopt an engineer’s point of view here. While our results may not always be excellent, at least they will never be disastrous, in the sense that a judicious NoHope/ReHope (start/restart) strategy [CLE 99, TIN 02] will be able to improve the quality. What is gained in simplicity is sometimes naturally lost in efficiency. It is therefore normal that for any given problem, a program that must find its proper parameters by itself, and this during just one run, will render worse results than another for which parameters have been carefully refined through many tests. On the other hand, to make fair comparisons, (for example, in the number of objective function evaluations before finding a solution), it would be necessary to include the precise number of evaluations of the tests themselves.

The best way to prove that it is possible to write such a program is to present one. We will therefore describe the TRIBES program and show that it well satisfies our definition of an easy-to-use black box with satisfactory performance, even if there is room for improvement, particularly in non null granularity problems (typically with certain integer variables). The description below includes some structural adaptation strategies, which regulate swarm size modifications and information relationships between particles; and moving strategies, which indicate how a particle must modify its position.

We will first assume that a distance is defined on the search space, a hypothesis that permits us to define an efficient moving strategy based on hyperspherical probability distributions. Then, we will show how one can define other powerful moving strategies while retaining adaptation strategies. For example, a moving strategy that uses one dimensional Gaussian probability distribution can be easily formulated, and this can deal with more general problems, particularly problems of a combinatorial nature. By combinatorial, we mean small combinatorial problems (typically less than 50 nodes for the Travelling Salesman Problem, for example). Bigger ones can also be solved efficiently by PSO but only with hybrid strategies, which use specific local search algorithms [CLE 04, SEC 01b].

Description of TRIBES

What tribes are

An informer of particle A is a particle B whose best position found until now can be “read” by A. Note that this definition implies that A is an informer of itself. An informer is said to be “external” if it does not belong to the tribe of the particle (see below). If each particle of a swarm is seen as a vertex of a graph, we can show an information link (that is, a link starting from the informer to the particle which can read the informer’s information) by a directed edge from B to A. This means that every node will have a self edge, because every particle is an informer for itself.
The opposite edge, directed from A to B, can exist, and does exist in most PSO versions, including this one, but it is not a necessity. Furthermore, except for special topologies, not all particles point at A. We can thus define some subsets (symmetrical cliques in graph theory) such that, inside each one, every particle points at (informs) all other particles, including itself.

We will call these subsets tribes, a metaphor for different sized groups of people moving about in an unknown environment, looking for a “good” place. We will show that this structuring will automatically induce a process that is similar to nesting in genetic algorithms, and for the same purpose: to explore several promising areas simultaneously, usually around local minimums. 
Tribal relationships

Even if each tribe succeeds in finding a local minimum, it is necessary for them to inform one another so that they may decide collectively which is the global minimum. The information network between tribes consequently must be connected. In practice, this means that from any particle A to any particle B, there exists an information path, such as, “A informs A1, which informs A2…which informs B. ”
Let us summarize the global structure: each tribe is a dense network, and there is a network between tribes that simply ensures connectivity. We are typically in a “small world” type of relationship graph, a structure well known to be an efficient compromise for diffusion and exploitation of information [WAT 03]. Of course, this structure must be automatically generated and updated by means of creation, evolution and deletion of particles and tribes.

Quality of a particle

As in classical PSO, each particle has a current position, as well as a “best performance,” which is memorized. It is therefore at this level of detail we can determine if there is an improvement or not. A particle is said to be good if it has just improved its best performance, otherwise it is neutral. It should be noted that this is a qualitative definition because improvement is not measured. We check only if it is strictly positive (real improvement) or null (no improvement).

By definition, the best performance of a particle cannot deteriorate, and that is why we do not define a “bad” particle in the absolute, but only by comparison. .We can determine the particle having the least good performance within a tribe, and call it the worst (relative to its tribe). Similarly, we can determine the best particle relative to a tribe.

Moreover, compared to classical PSO, we increase the particle memory slightly so that it remembers its last two performance variations, thus maintining a short history of its moves. On that basis, we can define a third status: a particle is said to be excellent if these two variations are improvements. This will be useful for choosing the suitable moving strategy.

Quality of a tribe

What interests us here however is the global performance of a tribe. We will define two status, good and bad, and postulate a very simple, fuzzy rule: “The bigger the number of good particles in a tribe, the more the tribe is itself good and vice versa.”
In practice, the status of a tribe is evaluated as follows: Let T be its size (its number of particles) and let G be its number of good particles, at most equal to T. A number p is randomly generated according to a uniform distribution between 0 and T. If G is smaller than or equal to p, then the tribe is said to be bad, otherwise it is good.

Associated with these statuses are evolution rules that tend to promote the creation of new tribes, and then, the exploration of search space.

Evolution of tribes

Removal of a particle

The goal is to find the optimum at very little cost.  That is, we want to find the optimum by performing as few function evaluations as possible. Therefore, as soon as an opportunity of deleting a particle with almost no risk arises, we must take it. Note that it is better to conserve a particle by mistake (in the worst case, the number of evaluations to reach a solution will increase) than to remove one by mistake (at the risk of completely missing the solution).

That is why only a good tribe will eventually remove one of its particles, and only the worst one, because the information it carries (its best performance) is probably not very useful. However, in the case of a monoparticle tribe, the removal will occur only if one of its informers has a better performance. In effect, we want to be sure to conserve at least one particle with information of better quality than the one deleted.
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Figure 1. Removal of a particle from a multiparticle tribe. Particle P is the worst of its tribe, and the tribe has been declared “good.” In this case, P is deleted, and the redistribution of its external links (here a sole symmetrical link) is done on M, the best particle of the tribe. Note that all particles have a self link but they are not represented here for clarity. Such links do not play a role in the removal process

[image: image2.wmf]M

P

P

M

P


Figure 2. Removal of a monoparticle tribe. The tribe is declared “good”. The particle P, which is necessarily the worst of the tribe, even if it is “good” at the same time, should be removed. This however will be effective only if the best external informer Mp is better than P. The hypothesis is that the information carried by P is then less valuable than that carried by Mp
On the other hand, the deletion of a particle implies a reallocation of its information links. In the general case, this reallocation is done on the best particle of the tribe (cf. figure 1). In the case of a monoparticle tribe, since the removal of a particle leads to the deletion of the whole tribe, they are reallocated to the best external informer of the particle to be deleted (cf. figure 2).
Generation of a particle

A good tribe can remove its worst particle, for it probably does not need the information carried by this particle. On the contrary, a bad tribe needs more information for none of its particles seems to converge. It will then generate a new particle, keeping in contact with it. Generation is done in the simplest way : completely randomly according to a uniform distribution in the search space.

More precisely, each bad tribe will generate one particle, simultaneously, and these new particles will form a new tribe.

The term “to keep in contact” here signifies the establishment of a symmetrical link between the generated particle and the generator tribe, represented here again, for example, by its best element.

Frequency of adaptations

We note that it is neither necessary nor desirable to perform these structural adaptations at each iteration because some time must be allowed for the information to propagate among the particles. Here again, several possible rules can be formulated to ensure this. Theoretically, after each adaptation, we should calculate the diameter of the relationship graph. In order to do this, we must consider all the possible pairs of particles of the two different tribes and find the shortest information path linking them, in terms of number of edges. The longest one of these shortest paths would give us an estimation of the number of iterations necessary to be sure that the information carried by a particle can be transmitted, more or less directly and more or less distorted, to all the others.

This computation however is long, and instead the total number of information links is used as a heuristic rule. It seems to give good results. The rule is very simple: if the total number of information links is L after one structural adaptation, then the next structural adaptation will occur after L/2 iterations.

Swarm move

What kind of functioning do these rules induce? Initially there is just one particle representing a single tribe. After the first iteration, if the situation does not improve, which is very probable (even certain with the moving strategies detailed below, for it does not move at all at the first time step), another particle will be generated, forming a second tribe. 

At the next iteration, if neither of the two particles improves its situation, each of the two tribes will generate one new particle simultaneously, forming a new tribe of two particles, and the process will continue. We note that as the number of links increases, the importance of the number of iterations between the two adaptations increases. So when things go badly, larger and larger tribes are generated, increasing the swarm’s search power, but more and more rarely. Between two adaptations, the swarm then has more and more chances to find a solution.

Conversely, as soon as a rough solution is found, each tribe will progressively remove its worst particle, possibly to its complete extinction. Ideally, when convergence becomes increasingly certain, all the tribes except the last one generated are reduced to one or two particles. Overall, the swarm tends to grow more and more slowly, in an asymptotic way (cf. examples below). It really diminishes (at least temporarily) only for some simple cases, when most of the tribes are good.

Moving strategies

Intuitively, it seems a good idea that a particle adopts a moving strategy that depends on its recent past. For example, if it has just improved its position twice in succession, it is probably not necessary for it to go too far from the area where it is. On the face of it, as its history keeps two performance variations, one can distinguish four cases. However, here we will consider only two cases, in order to illustrate the principle, namely : the particle is excellent (two improvements in a row), or it is not (the three others cases).

When a particle is excellent, we will use a strategy that is indeed partly a random one, but not too much : the simple pivot method. Otherwise, we will add even more randomness, with the noisy pivot method. Note, however, that the confinement of the particle inside the search space is done as in classical PSO, except that there is no velocity to update. If a component of the position tends to go out of the acceptable values, it is then simply brought back to the nearest acceptable one. 

Because the strategy depends on the recent past, this process can be viewed as a Markov one. It has not yet been formalized that way, so this may be an interesting approach for a future work.
Simple pivot method

The original pivot method [SER 97], rewritten with PSO vocabulary will have the following characteristics. There will be an even number of particles at each iteration and they will be paired. For each pair, the best of the two will be the pivot for the pair. The pivot does not move and the new position of the other particle is chosen at random with a symmetrical distribution centred on the pivot, for example a Gaussian one.

Here, we treat things a bit differently. For each particle, we too consider two points in the search space, but these are its best performance p and the best one of its informer, g. Two hyperspheres, Hp and Hg, are then defined, centred on these points and with a radius equal to the distance between them.

Then, in each hypersphere, a point is chosen at random according to a uniform distribution (a small program doing that is given in the appendix. Besides, it is an excellent exercise of statistics!). These two points are then weighted by using the objective function values at the centers of the hyperspheres. See below for the method currently used, that gives quite good result.  Finally, the new position is computed as the center of gravity of these two weighted points.
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                    [image: image4.wmf]
Figure 3. Choice of a new position. Point p is the best performance of the particle, point g is the best one of its informers. The common radius of the two hyperspheres Hp and Hg is the distance between these two positions. A point i is  randomly chosen according to a  uniform distribution  in Hp.  Another point is similarly chosen  in Hg, and the two are linearly combined. The better g is compared to p, the nearer to g will be the result. The distribution of the possible new positions  also lies in a hypersphere, but it  is not uniform anymore, as one can see on the sample of 1000 positions on the right part of the figure

We want to make two remarks here. First, giving a weight seems arbitrary and on the face of it, quite embarrassing. However, in fact, the method is extremely robust in relation to the choice of the weighting function w, if this function satisfies some very general conditions : it should be strictly “decreasing” and should not tend towards infinity when the objective function f tends towards its minimum (we assume it is non negative, without loss of generality). More precisely, w should satisfy the following properties, where H is the search space :
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3- let 
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be the point where f attains its minimum. Then 
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For example, the following weighting coefficients 
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can be chosen for p and g : 
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The second remark is as follows. It seems that the current position of the particle is not taken into account to compute the final position, unlike in the classical PSO formula. This might appear strange, but, indeed, it is not the case. If this position is a bad one, there is indeed no need to use it, and thus, one could say it is precisely being taken into account by ignoring it ! On the other hand, if it is good, then it coincides with its best performance p and, because of this, it indeed is used in the computation.

Noisy pivot method

This second strategy begins exactly like the previous one. Only, after having determined the new position, it is again modified using a zero mean Gaussian random noise, with a small standard deviation . For example, if f is the function to minimize, the standard deviation can be defined by 
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Here again, the exact formula is not very important. It is enough if the result is at most equal to 1, and strictly increasing with the performance difference 
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In practice, for each component of the position that has just been computed, one draws a b value according to the noise distribution, and the component is multiplied by (1+b). So, each component 
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of the new position x that has just been computed is modified according to the following formula: 
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Choice of strategy 

We have seen that each particle maintains a short history of its two last moves. It is used to choose the strategy for the next one. If the particle is excellent, that is, if the last two moves were improvements, then the simple pivot method is used. There is indeed probably no need to go very far to find an even better position.

Conversely, in all other cases, it may be interesting to look beyond the hyperspheres with a nonzero probability. Then, the noisy pivot method is used.

Functioning examples

We now have all that we need to code the program and to make it working. A source code in C is available on the Internet (cf. the Particle Swarm Central [PSC], Programs/Maths Stuff section). The results presented here have been obtained with version 5.0.

Let us deal with some textbook cases, just to illustrate the main aspects of its behaviour. We mainly compare it to a more classical PSO version. The one that is used as a benchmark is the constricted PSO (CPSO) [CLE 02, KEN 01]. Let us recall very briefly that in this version the movement of a particle along each dimension is defined as
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with the constriction coefficient 
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 function gives a random number with an uniform distribution between a and b. The parameter values used here are classical: a circular neighbourhood of size three, and a confidence coefficient  equal to 4.1.

If the particles of a swarm of size N are numbered from 0 to N-1, the circular neighbourhood of size three for the n-th particle consists of the informers whose numbers are {n-1 [modulo N], n, n+1 [modulo N]}. The size of the swarm is constant during each run, but different sizes will be tested. For TRIBES, of course, there is no need to define all these parameters.

As a user, one may want to either minimize the computing time needed to find a solution with an error less than a given threshold, or find the best possible solution after a given computing time. In practice, we will replace “computing time” by “number of evaluations.” These two notions are not always equivalent, but it is indeed the case here because intermediate computation plays a very small part in the total time.

Minimization of the number of evaluations

2D Rosenbrock

Let us first consider the very simple example of the Rosenbrock function in the square [-10,10]2. Its general formula in dimension D is
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 We know that its global minimum is zero. Let us take care of this fact by telling the program that we want to find a value at most equal to 10-3. Here, we are working with algorithms that have a partly random behaviour, so one can compute mean values and success probabilities by running the program several times (and without reinitializing the random number generator!).

Therefore, it is possible to estimate the distributions of the number of evaluations needed to reduce the error threshold for TRIBES as well as CPSO with different swarm sizes, with a probability of success greater than 99 %. It can be easily seen from the estimations computed from 500 runs (cf. figure 4), that these distributions are certainly not Gaussian. They are not even symmetrical, and look more like Beta laws.

This phenomenom still has to be explained, but it reminds us that information like mean and standard deviation may be not enough for comparing two algorithms. It is not the case here, for the differences are very notable. For CPSO, the optimal size is 15 particles, which gives a mean evaluation number of 2436, with a standard deviation of 1792. 

Below this size, the success probability is smaller than the chosen threshold, and above, the mean evaluation number is bigger. On average, TRIBES is not so good, with a mean of 2680 evaluations and a standard deviation of 1454, but the important point is that about twenty runs were needed with CPSO (all sizes between 10 and 30 particles) to find the “right” size. With 30 particles, for example, we obtain a bigger evaluation number (3131, standard deviation 1738).
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Figure 4. 2D Rosenbrock. Distributions of number of evaluations. The efficiency of the algorithm, estimated as the number of function evaluations needed to find a value smaller than 10-3 with a probability greater than 99%, depends on the swarm size for CPSO. The optimal size is 15, found after several runs, which gives a mean evaluation number of 2436. With TRIBES, one obtains a global result that is not so good (the mean is 2680 evaluations), but appreciably better than, for example, CPSO with 30 particles. The distributions has been computed after 500 runs for each case

With TRIBES, we do not have this problem, for it always starts with just one particle. Figure 5 shows the evolution of the swarm size in an average case. We have seen that the evaluation number between two adaptations is an increasing function of the swarm size.

As a result, a level that is higher than the previous one is also necessarily longer (and vice versa). In addition, the rules for deletions and additions award a slight advantage to these last ones. Finally, on average, the swarm can not grow very quickly, and this restricts the number of evaluations, but nevertheless becomes more and more efficient.

Additions of particles to the swarm do increase its kinetic energy and, therefore, its search power, and in a more judicious way than just the random fluctuations that occurs with CPSO. Figure 6 shows kinetic energy fluctuation in both cases.
Note that significant increases of kinetic energy with TRIBES are rare, but pertinently done, that is to say automatically and because there is a need. In particular, note the very large last peak after evaluation 1800. This happens precisely because very few particles are still in progress, and therefore there is a need of new ones.
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Figure 5. 2D Rosenbrock. Swarm size fluctuation with TRIBES. At almost every adaptation, additions are slightly larger than deletions, as it is usually the case because of the non symmetrical rules. A plateau is the interval between two adaptations. A plateau that is higher than the previous one is also longer and vice versa, and so the growth slows down. On this run, one obtains an error smaller than 10-3 after 2291 evaluations
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Figure 6. 2D Rosenbrock. Kinetic energy fluctuations. With CPSO, random fluctuations are not enough to prevent a very slow convergence. It needs 3675 evaluations to find a solution. Energy peaks for TRIBES correspond to the net increases of the swarm size shown on figure 5

30D Griewank

When a lot of consecutive runs are done without any failure, it is easy to compute several statistical elements, as seen above. Here, failure means “no solution in less than N evaluations.” Of course, the bigger N is the smaller is the failure rate, but for a given algorithm the reduction in the failure rate is usually non linear and becomes almost zero when N increases after a given “threshold.” 

Here, we will illustrate such a case, with the example of the classical Griewank function on [‑300,300]30, for which most stochastic algorithms, including TRIBES, often get trapped in a local minimum [MAR 01, WHI 95, ZHA]. In dimension D, the function is defined as
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Experimentally, one notes that if a value smaller than 10-3 is not found after 40000 evaluations, it is very probable that further search will not be able to find a solution, and it is better to restart the program with another initial position. Therefore, we will take N=40000.

With CPSO, the optimal swarm size is 20, and with this swarm size one gets a failure rate of about 55 %. With TRIBES, the failure rate is almost the same (slightly lower, actually). It means, in both cases, we need to run the program only 8 times (without reinitializing the random number generator) to get at least one successful run with a probability of 99%. So, we can almost surely get a solution after less than 8x40000=320000 function evaluations.

As the failure rates are similar, one can compare these two algorithms based on just the successful runs. For those runs, with CPSO (20 particles), the average number of evaluations is 35900, and for TRIBES it is 24704. So, even for this case, TRIBES is significantly better.

Search with a constant evaluation number

One can ask the following question too as far as efficiency of the algorithm is concerned. I have a limit of 40000 function evaluations. What is the best result that I can expect? More precisely, for each level of accuracy, what is the success probability? With CPSO, in order to answer this question, the user  needs to find the best swarm size by running the program enough number of times to have a good idea of the best accessible result, and this for a whole range of swarm sizes.

Let us look at the result obtained for the Rosenbrock function on [-10,10]30, shown in figure 7. For each size, hundred runs of 40000 evaluations have been launched, and the mean of the hundred results is noted along the ordinate. One notes that the optimal swarm size is 20, but there is no monotony at all : swarm sizes 15, 16 and 23 are almost as good, but not intermediate ones.
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Figure 7. 30D Rosenbrock. Here, one is restricted to 40000 evaluations. With classical PSO, the result is eminently variable, depending on the swarm size, without any clear rule. For each size, hundred runs have been launched. The best result (43.3) is found for a swarm size of 20 particles

As soon as this result is obtained, in order to estimate the probabilities better, one can launch 500 runs with CPSO (20 particles) on one hand, and with TRIBES on the other. With CPSO, one finds a final mean value of 49.6 (standard deviation 49.6), and with TRIBES the mean value is 42.6 (standard deviation 39.6). Figure 8 gives more detailed information. It indeed confirms that TRIBES is on the whole slightly better than CPSO, mainly because it more frequently finds some values smaller than 25 after 40000 evaluations: in 11.5 % of cases, against 4 % with CPSO.
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Figure 8. 30D Rosenbrock. Probabilities of obtaining a given value after 40000 evaluations. For example, with CPSO (20 particles),there is 83% chance of obtaining a value smaller than 40, against 80 % with TRIBES. For small values, TRIBES is clearly better: 11.5 % chance to obtain a value smaller than 25, against 4 % with CPSO

Heterogeneous problems

Theoretically, because of the use of hyperspheres, application of moving strategies is restricted to search spaces which have a distance defined on them. Nevertheless, it is tempting to apply the method as is to other kind of search spaces, particularly partly combinatorial ones (coded, for example, with integer values on some dimensions), not caring about mathematical evidence. The fact is that it works, and quite well (for small problems, as mentioned earlier), but it is nevertheless possible to improve performances by defining a moving strategy specific to this case.

In order to do that, one just needs to consider each dimension independently. It would be perfectly possible to exactly reuse the “standard” strategies seen above, and, in such a case, for each dimension, hyperspheres would be reduced to intervals. However, the global resulting distribution would then lie in a hyperparallelepiped (slightly distorted for the noisy strategy), almost like in classical PSO, and this is not very satisfying.

We will now demonstrate that one should not focus on one method (hyperspheres), and that some other methods are possible. Let us define, for example, a strategy that is inspired by classical PSO, but using independent Gaussian distributions. For each dimension d, the new value of the position component is computed as follows : 
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where
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where the rand_gauss(m,s) function generates a number under the normal distribution with a mean m and a standard deviation s. Figure 9 gives an idea of the result for a two dimensional space (both are considered real so that comparison with the hypersphere method becomes easier).

Note that the distribution is more concentrated, which penalizes medium distance exploration, but, at the same time, the long distance exploration is also possible: every point has a nonzero probability of being examined, and this is precious in spaces that are finite, at least along some dimensions. So, if one of these variables is an integer between 1 and 100, any integer from this interval has a nonzero probability of getting considered.
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Figure 9. Distribution with two independent Gaussians. The particle (black disc) has just moved. The previous position (grey disc with black rim) defines the origin of its velocity vector. It has been reached from p, best performance found so far, after one or more iterations. The best performance of informers is g. The figure shows a sample of 1000 possible next positions. The density is higher near g ( more or less), but some point are quite far. They visualise the nonzero probability of long distance exploration 
We will now illustrate this variant of the “standard” moving strategies seen above (pivot methods) on two small examples. Note that this distribution contains its own Gaussian noise, and that is why we will use just one strategy, without considering the recent past of the particle, no matter whether the particle is excellent or not. 

Knapsack

The definition of the problem is simple: find ten different integers between 1 and 100, so that their sum makes 200. The dimension of search space is then ten, and for each dimension the acceptable values are all integers between 1 and 100. Figure 10 shows the result obtained using CPSO (after having found the best swarm size, which in this case is 9 if we want a success probability greater than 99.9 %), alongwith the results obtained with TRIBES, either using the “standard” pair of strategies, or the one with independent Gaussians that we have just seen.

For all cases, a confinement constraint is applied. That is, after a position has been found, we move to the nearest position that has all its components different. The “distance” between two positions used here is the minimum number of changes needed to transform the first position into the second one. For example, if the found position is (20, 1, 30, 5, 8, 1, 10, 20, 9, 10) you need at least three changes, and one of the nearest acceptable positions is (20, 1, 30, 5, 8, 2, 10, 19, 9, 11). Note that although there are usually several such possible positions, the small algorithm currently included in TRIBES gives just one. Of course, “acceptable” does not mean the position is a solution of the problem, it just means the constraint “all components different” is satisfied.
As one can see, with  hyperspheres and the double strategy, TRIBES is satisfying, but not much more than that. It needs a mean number of evaluations equal to 188 (standard deviation 134), compared to 92 (standard deviation 41) with CPSO. 
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Figure 10. 10D Knapsack. Distribution of the result found with different methods. The “standard“ TRIBES is not better than CPSO (as soon as the optimal swarm size of 9 has been found), with a mean number of evaluation of 188, compared to 92 for CPSO. However, using the moving strategy with independent Gaussian distributions is clearly more efficient (mean number of evaluations 86)

The curves reflect results after 500 runs for each case. So, that the good result obtained with Gaussian distributions (mean 86, standard deviation 88) is purely due to randomness has a probability of less than 5 %. 
JM Hybrid

This interesting small three dimension problem has been suggested by B. Jeannet and F. Messine [JEA 03]. The function to minimize is
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and the search space is defined by
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The x1 variable is in fact just an index that relates back to values in two lists a1=(0.5 0.3 0.8 0.1 0.9 0.12) and a2=(-0.5 0.6 0.1 1.5 -1 0.8). The minimum -112.5 is found for x1=4, x2=-7.5 and x3=10.

The method suggested by the authors (using an interval arithmetic and embedding functions) gives the solution after 3271 evaluations. This method is a deterministic one, so the result is certain. Of course, it is never the case with a stochastic algorithm like PSO.

For a fair comparison, we must then impose a very high success probability, for example 99.99 %. Figure 11 clearly shows that it is possible to do better with CPSO, with the usual reservation that one needs to find the good swarm size first (in this case, 20 particles). The mean number of evaluations is then 1007. The corresponding number of evaluations is 1040 with TRIBES using hyperspherical distributions, but goes down to 600 with independent Gaussian distributions.
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Figure 11. 3D hybrid problem. One dimension is a continuous one, the others are discrete. A success probability of 99.99 % has been  imposed. In this case, the use of moving strategies with independent Gaussian distributions is clearly more efficient. The mean evaluation number is just 600, compared to 1040 with hyperspherical distributions, and 1007 for CPSO  with  20 particles, optimal swarm size for the required success rate

Strategies for partly combinatorial problems
Of course, one can ask the following question: why not choose the strategy with independent Gaussians for all kind of problems, no matter if they are partly combinatorial (hybrid/heterogeneous) or not ? Actually, after a lot of trials, the answer is ambivalent, as illustrated in table 1.

The Parabola function is one of the test functions used in table 1.  Note that the Parabola function that appears in this table is sometimes called Sphere, although its shape is not at all spherical.  That its formula looks similar to the formula of a sphere may be the reason.
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For the first problem (2D Rosenbrock), independent Gaussian distributions are clearly better. However, it is not at all the case for the two other continuous problems. At the same time, these distributions are indeed more efficient for the three problems that have a combinatorial aspect.

Therefore, it is better to choose the strategy judiciously depending on the kind of problem. Unfortunately, it is up to the user to say if, in the user’s opinion, the problem is a partly combinatorial one or not, as the fact that some dimensions are discrete is not enough to decide it automatically.

Actually, though a combinatorial problem always implies a discrete search space, the converse is not true. However, the default method works in all cases, even if its performance is worse than the methods those can be obtained by refining the problem description.

	Problem
	Kind of problem 
	TRIBES, hyperspheres
	TRIBES, independent Gaussians

	Rosenbrock on [-10, 10]2, accuracy 0,001
	continuous
	2680 (1454)
	1768 (1125)

	Parabola on [-20, 20]10, accuracy 0,001
	continuous
	987 (224)
	1665 (330)

	Griewank on [-300, 300]2, accuracy 0,001
	continuous
	24704 (23087)

failure rate 30 % for a max. number of evaluations equal to 10000
	failure rate greater than 80 % even for a max. number of evaluations equal to 100000

	 10D Knapsack
	combinatorial
	188 (134)
	86 (88)

	JM Hybrid
	hybrid
	1040 (356)
	600 (548)

	20D Fifty-fifty (20 different integers between 1 and 100, and sum of the first ten is equal the sum of the last ten)
	combinatorial
	332 (293)
	70 (48)


Table 1. Comparison of strategy change for heterogeneous problems. For each problem 500 runs have been launched, and the result shown here is the mean number of evaluations (standard deviation in brackets). If not mentioned, the failure rate is less than 0.1 %
Abstract

It is possible to design PSO algorithms as “black boxes”, the user defining only the search space, the function to minimize, the required accuracy and, as a precaution, a maximum number of evaluations.

TRIBES program, whose source code is available on the Internet, is an example of an implementation of such an algorithm. It works because of co-operation of tribes of particles. In each tribe, information links build a completely connected graph. Between tribes, links are looser, but the whole graph is still connected. Structural strategies are automatically applied for addition and deletion of particles and information links.

Moving strategies of a particle are based on hyperspherical probability distributions, which may be with or without noise. The choice is made depending on the short term history of the particle. For partly combinatorial problems, it seems that using independent Gaussian distributions for each dimension gives better results.

Even if we disregard the results, TRIBES is better than classical PSO (with constriction) because it frees the user of the burden of finding the “good” parameters, particularly the optimal swarm size. Furthermore, the results with TRIBES, evaluated as “mean number of evaluations needed to obtain a solution”, or “best solution found after a given number of evaluations, ” are at least equivalent to the results obtained by PSO (with constriction), and quite often are of better quality.
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