Particle Swarm and Information. Part 1

DRAFT 2001-11-16

Particle Swarm Optimization and Information

Part 1 : Experimental results and comments

Maurice.Clerc@WriteMe.com

Introduction

There are different versions of Particle Swarm Optimization algorithms, but they all can be seen from an informational point of view: what kind of information each particle has access to, and how it uses it. To illustrate this, I study here two versions, a constricted one and an adaptive one, on three problems simple enough to be easily completely analyzed in terms of probability to find a solution. They are compared to pure random search.

The three problems
Tableau 1. The tree problems analyzed

Function name
Search space
Formula
Target value

Sphere 2D
[-20,20]2

[image: image1.wmf]
0

Rosenbrock 2D
[-50,50]2

[image: image2.wmf]
0

Rastrigin 2D
[-5,5]2

[image: image3.wmf]
0

The three methods

Random search rPSO
The dimensionality of the search space H is D. We do suppose H is finite, so that for each dimension k there is a minimu value xmin,k and a maximum one xmax,k. So, for each particle, the move is defined by:

[image: image4.wmf]
At time step, the particle uses no (variable) information at all.

Constricted version cPSO
The version used here is PSO Type 1", as defined in [CLE 01c] and tested in [KEN 01a]:

[image: image5.wmf]
with=4.1,  = 0.8, a swarm size equal to 20, and a neighbourhood size equal to 3.

· At each time step, the pieces of variable information a given particle knows and can transmit are:

· its current position x(t) and the corresponding objective function value,

· its best position found so far, pi(t), and the corresponding objective function value.

Adaptive version aPSO
The version is a simplified version of A2PSO (Adaptive Autonomous PSO):

[image: image6.wmf]
with =0.5, adaptive , adaptive swarm size N in [3,∞[, adaptive neighbourhood size in [3, N[.
· At each time step, the pieces of variable information a given particle knows and can transmit are:

· its current position x(t) and the corresponding objective function value,

· its best position found so far, pi(t), and the corresponding objective function value
· its previous position (to estimate its improvement)

· its neighbourhood size,

· the swarm size (global information)

· As we can see, and to summarize, depending on the algorithm, each particle knows:

· no (variable) information at all (rPSO),

· only local information (cPSO),

· a bit more local information and a global one (swarm size) (aPSO).

However, to know is not enough, if you don't use your knowledge. So, let us see now how "difficult" are the three problems and how the three algorithms cope with them.

Objective function complexity

Method

For a given objective function f, on a given search space H, how difficult it is to find a solution ? Just said like that, this question has no meaning. We have to precisely define what a "solution" is. Let T be a target value and  an admissible error. A solution point x in H is so that
[image: image7.wmf].

The solution area S is then the set of all solution points. It is depending on , and not necessarily made of just one connected part, particularly if the function has several local optimums and if  is big enough. However, except for some « strange » functions, it is always possible to define a measure (the size) of the solution , noted
[image: image8.wmf] . For example, for a discrete search space it is just the number of solution points, and for a continuous search space in R, it may be the total length of an union of intervals.

So we can study the relation between the admissible error and the solution area size, that is to say the function  so that
[image: image9.wmf] . We do suppose here there is at least one solution point in the search space, and that the objective function is finite, that is to say all its values are in [fmin, fmax]. Also, for simplicity, we do suppose the target T is equal to fmin. So we have immediately an obvious point for the curve
[image: image10.wmf]:
[image: image11.wmf]. If you admit any possible function value, so any point of the search space is a solution! Also, if there is just one global minimum, we have the point (fmin,0). But what happens between these values ?

To study that "experimentally", we define some objective function value classes, that is to say we divide [fmin, fmax] into n [fi,fi+1] intervals, with f0=fmin. We also divide the search space into a lot of "cells", and choose one point x inside each cell. For each cell we compute f(x) and count +1 for the class i if
[image: image12.wmf] (or
[image: image13.wmf] if fi+1=fmax).

So we finally have n numbers ci. We cumulate them by
[image: image14.wmf], so that each c’i is finally an estimation of (fi).

In order to compare the three functions, we normalize the results by dividing them by n.

Results and comments

As we can see on Figure 1, we have three typical shapes. If we define
[image: image15.wmf], each curve gives us in fact an estimation of how difficult it is to find a solution by chance, for a given ’. For the three functions, it is of course very easy (normalized solution area size almost equal to 1) as long as ’ is big enough. But when ’ is decreasing, we clearly see some differences.

Was do say us the curves ? For all functions, they of course say the difficulty is increasing. However, for the Sphere function, the curve says it is increasing in a quite « normal » way (i.e. linear). For the Rosenbrock function, it says it is first quite easy (at the very beginning a bit more difficult than for the Sphere but, after that, far easier) and then suddenly far more difficult for small ’ values. For the Rastrigin function, it is always harder than for the two others (except at the very beginning), but it becomes a bit easier than before for really small ’ values.

[image: image16.wmf]
Figure 1. Difficulty to find a solution versus admissible error

Now, of course, we usually are not looking for a solution purely at random: we do use a (hopefully) « intelligent » algorithm which find « interesting » positions and try to improve them. However, what these results suggest, in particular, is that for some functions, it is more efficient to indeed run the first steps purely at random. Below, we will try to see more precisely why.

Efficiency and success rate

Method

Now we use the three algorithms : Random, Constricted PSO, and Adaptive PSO. A move of a particle is said "successful" if the new position is strictly better than the best one ever found so far.

At each time step t we count the total number of objective function evaluations e(t) (i.e. the number of moves, for there is no additional local search) and the total number of successful moves s(t). Then we simply compute the success rate s(t)/e(t) (said « cumulated », for it takes into account all moves from the very beginning, and not only the moves during the current time step).

Results and comments

For each function, and each algorithm, the stop criterion is an admissible error  equal to 10-5. As we can see on the Figure 2, the Adaptive method is always better, for it finds an admissible solution before the others, but this is here not the point. The point is that for Rosenbrock 2D and Rastrign 2D, the random search is better, at the beginning, to find some interesting positions. It is particularly clear for the Rastrigin function, when you compare with Constricted PSO. Nevertheless, the good news is that even for this case, and even at the very beginning, Adaptive PSO is almost as good as the random search. This is in fact because it also generates from times to times new particle almost at random [CLE 01a].
So, in some cases, it would be better to begin with pure random moves. However, you can’t guess for which cases, and how long you should do that, and, as we can clearly see, using the random method a too long time gives very bad results. So, finally, it appears Adaptive PSO is a good compromise. On the long term, the intuitive idea seems to be right: the more information you use, the more efficient you are.

However, it is not so obvious, for using information is not at all costless, so, if efficiency is not only depending on the results bu also on the cost to obtain them, the function "efficiency vs information used" may be not always be increasing, and, more precisely, may have a maximum. Among other things, we will study this point in Part 2.

References

 PROGCOMP ENBbu

[CLE 01a] Clerc M., Guided Random Generation for Adaptive Particle Swarm Optimization, France Télécom R&D, 2001.

[CLE 01c] Clerc M., Kennedy J., "The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space", IEEE Journal of Evolutionary Computation, vol. in press, 2001,

[KEN 01a] Kennedy J., Eberhart R., Shi Y., Swarm Intelligence, Morgan Kaufmann Academic Press, 2001.

[image: image17.wmf]
[image: image18.wmf]
[image: image19.wmf]
Figure 2. Cumulated success rates for three functions and three methods

_1067341336.unknown

_1067342774.unknown

_1067427895.unknown

_1067428127.unknown

_1067428177.unknown

_1067427946.unknown

_1067428016.unknown

_1067421012.unknown

_1067421636.unknown

_1067419649.unknown

_1067343465.unknown

_1067342092.unknown

_1067342207.unknown

_1067341650.unknown

_1067340928.unknown

_1067341071.unknown

_1067340850.unknown

