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Particle Swarm Optimization and Information
Part 1 : Experimental results and conments

Maurice.Clerc@VitelMe. com

Introduction

There are different versions of Particle Swarm Optim zation algorithms, but they
i nformati onal point of view what kind of information each particle has access to, a
this, | study here two versions, a constricted one and an adaptive one, on three p
easily conpletely analyzed in terns of probability to find a solution. They are conpal

The three problems

Tabl ead. The tree probl ens anal yzed

Function nan| Search spacs Formul a Target val ue

Sphere 2D [ - 20, 20] 2 D 0

=1

Rosenbr ock 2D -50, 50] 2 D-1
[ ] ; 100(x% — Xg1) + (L %)

=1

D

Rastrigin 20 [-5,5]?

; (x2 -10c05(27%) +10)

The three methods

Random search rPSO

The dinmensionality of the seaishDMgaam ddipposiesHinite, so that for dadheatiardrsian
m ni mu vabugy and a maxi mum one. xgQ,« for each particle, the nmove is defined by:

EX(t+1) = (%), k=12,.,D

d

= :alea(xmin‘k...xmaxjk)

At tine step, the particle uses no (variable) information at all.

Constricted version cPSO
The version used here is PSO Type 1", as defined i nfKENEDDdk] and tested in

>4
[k 0]o,1

H 2K

X = 2

0 g2 ot -

y(t+1)= X(M0) + alea(0..4)(p (1) - x(t)) + aleal0...9)(py(t) - (1))

EX(t +12) = x(t) + v(t +1)
withp=4.1lxk = 0.8, a swarm size equal to 20, and a nei ghbourhood size equal to 3.
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- its current peéi)tiaod the correspondi ng objective function val ue,
- its best position fou(d ,sarfdart,he correspondi ng objective function val ue.

Adaptive version aPSO
The version is a sinplifiedPger ¢iddapof va® Aut onomous PSO) :

%/(t +1) = av(t) + beta( py (t) - x(t))
Ex(t+1) = x(t) + v(t +1)

with=@®.5, adapfj vadaptive swarmsize Nin [3, [, adaptive neijhbourhood size in [3,

At each time step, thevaiiealelse afnformati on a gi keowpaandctan transmt are

- its current peéi)tiaod the correspondi ng objective function val ue,

- its best position foutd ,sardrt,heg correspondi ng objective function val ue
- its previous position (to estimate its inprovenent)

- its neighbourhood size,

- the swarm size (gl obal information)

As we can see, and to summarize, depending on the algorithm each particle knows:
- no (variable) infornation at all (rPSO,

- only local information (cPSO),

- abit nore local information and a gl obal one (swarm size) (aPSO) .

However, koowis not enough, if youydan'tknosktedge. So, |let us see now how "difficul
three problems and how the three al gorithms cope with them

Objective function complexity

Method

For a given objective function f, on a gi vieowseiafrfcihcgiptaciet Hs to find a solution ?
that, this question has no nmeaning. We have to precisely defire whdtargetsolaitieordnd s
an adni ssi bl e esobutiAn poiim Hs so ffifa}-T|<e.

Thesol ution aBeas then the set of all solution points. andt nos depesdiangl gpnnade of j
one connected part, particularly if the function has severid Bigcatnaph.nuHswearst i f
except for sone « strange » functions, it is always possible to define a measure (tl
| . For exanple, for a discrete search space it is just the number of solution poin

space in R may be the total length of an union of intervals.

So we can study the relation between the adm ssible error and the solution area siz
so thal9=¢&(¢) . W do suppose here there is at least one solution point in the sec
obj ective function is finite, that is to day.faki].i tA swogl dew aiemlncity, we do suppe
target i§ equal ;b0 So we have imediately an obvious pofeiS)f off LhéH[purve you admit
any possible function value, so any point of the search space is a solution! Alsc
m ni mum we have the point (fmn 0). But what happens between these val ues ?

To study that "experinentally", we define sone objective function value cfasses, t
frl intofnfi] interval s5f ywithWeoal so divide the search space into a lot of "cells
poi nk inside each cell. For each cek) medcoopnte+i(for ithid(x)@lss f,,[ (off, fi]

if fivaxfm
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i
So we finallynhavuebers. cy\ cumul ate thea,h:ch
=1

i, so that gack €inally an estinmation

é(f) .

In order to conpare the three functions, we nornalize themesults by dividing them by

Results and comments

As we can see on Fj gweehdve three typical shapesszlff—\ﬁg—def,i neach curve gives us in
max min

fact an estimation of how difficult it is to find a sa utFon bhechanee, flioct aogsyent

course very easy (nornmalized solution area size alnost égudli gt @nbughs | &g iahen ¢

decreasing, we clearly see sone differences.

Was do say us the curves ? For all functions, they of course say the difficulty is
Sphere function, the curve says it is increasing in a quite « normal » way (i.e
function, it says it is first quite easy (at the very beginning a bit nore difficult
far easier) and then suddenly far noregdividliuad.t Foor tdremlRastrigin function, it is a
than for the two others (except at the very beginning), but it beconmes a bi't easier
val ues.
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Figure.1Difficulty to find a solution versus adnissible error

Now, of course, we usually are not l|ooking for a solution purely at random w
« intelligent » algorithm which find « interesting » positions and try to inprov
results suggest, in particular, is that for sonme functions, it is nore efficient to
random Below, we will try to see nore precisely why.

Efficiency and success rate

Method
Now we use the three algorithms : Random Constricted PSO, and Adaptive PSO A nove
"successful" if the new position is strictly better than the best one ever found so fi

At each tinmetstvp count the total nunber of objective funct{ibneeveheahuoberepf nove:
for there is no additional |ocal search) and the total stunbefheri weicsiessifyl c ompese
the success (tafe)s(said « cunulated », for it takes into account all noves fromthe
only the noves during the current time step).



Particle Swarm and I nformati on. Part 1 DRAFT 2001-11-16

Results and comments

For each function, and each algorithm the stop criteriegualstan 18d%i sAs bve eamosee
t hemi gure, 2 he Adaptive nmethod is always better, for it finds an adm ssible solution
is here not the point. The point is that for Rosenbrock 2D and Rastrign 2D, the ra
beginning, to find some interesting positions. It is particularly clear for the
conpare with Constricted PSO Nevertheless, the good news is that even for this c
begi nning, Adaptive PSO is alnost as good as the random search. This is in fact bei
times to times new particle al jiE @talrandom

So, in some cases, it would be better to begin with pure random noves. However, yc
cases, and how |long you should do that, and, as we can clearly see, using the rand
gives very bad results. So, finally, it appears Adaptive PSO is a good conprom st
intuitive idea seens to be right: the nore information you use, the nore efficient yo

However, it is not so obvious, for using information is not at all costless, so, if
on the results bu also on the cost to obtain them the function "efficiency vs i
al ways be increasing, and, nore precisely, may have a maxi num Anmong other things,

in Part 2.
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Fi gure. 2Cumul at ed success rates for three functions and three nethods



