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Particle Swarm Optimization and Information
Part 1 : Experimental results and comments

Maurice.Clerc@WriteMe.com

Introduction
There are different versions of Particle Swarm Optimization algorithms, but they 
informational point of view: what kind of information each particle has access to, an
this, I study here two versions, a constricted one and an adaptive one, on three p
easily completely analyzed in terms of probability to find a solution. They are compar

The three problems

Tableau 1. The tree problems analyzed
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The three methods

Random search rPSO

The dimensionality of the search space  H is D. We do suppose H is finite, so that for each dimension k there is a
minimu value xmin,k and a maximum one xmax,k. So, for each particle, the move is defined by:
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At time step, the particle uses no (variable) information at all.

Constricted version cPSO

The version used here is PSO Type 1", as defined in [CLE 01c] and tested in [KEN 01a]:
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with ϕ=4.1, κ = 0.8, a swarm size equal to 20, and a neighbourhood size equal to 3.

At each time step the pieces of variable information a given particle knows and can
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- its current position x(t) and the corresponding objective function value,
- its best position found so far, pi(t), and the corresponding objective function value.

Adaptive version aPSO

The version is a simplified version of A2PSO (Adaptive Autonomous PSO):
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with α=0.5, adaptive β, adaptive swarm size N in [3, [, adaptive neighbourhood size in [3, N[.

At each time step, the pieces of  variable information a given particle knows and can transmit are:
- its current position x(t) and the corresponding objective function value,
- its best position found so far, pi(t), and the corresponding objective function value
- its previous position (to estimate its improvement)
- its neighbourhood size,
- the swarm size (global information)

As we can see, and to summarize, depending on the algorithm, each particle knows:
- no (variable) information at all (rPSO),
- only local information (cPSO),
- a bit more local information and a global one (swarm size) (aPSO).

However, to know is not enough, if you don't use your knowledge. So, let us see now how "difficul
three problems and how the three algorithms cope with them.

Objective function complexity

Method

For a given objective function f, on a given search space H, how difficult it is to find a solution ? 
that, this question has no meaning. We have to precisely define what a "solution" is be a target value and ε
an admissible error. A solution point x in H is so that f x T( ) − < ε .

The solution area S  is then the set of all solution points.  It is depending on ε, and not necessarily made of j
one connected part, particularly if the function has several local optimums and if is big enough. However,
except for some « strange » functions, it is always possible to define a measure (th
S  . For example, for a discrete search space it is just the number of solution poin

space in R, it may be the total length of an union of intervals.

So we can study  the relation between the admissible error and the solution area siz
so that  S = ( )ξ ε  . We do suppose here there is at least one solution point in the sea

objective function is finite, that is to say all its values are in [fmin, fmax]. Also, for simplicity, we do suppo
target T is equal to fmin. So we have immediately an obvious point for the curve ε, S( ):   f Hmax ,( ). If you admit
any possible function value, so any point of the search space is a solution! Also
minimum, we have the point (fmin,0). But what happens between these values ?

To study that "experimentally", we define some objective function  value classes, tn,
fmax] into n [fi,fi+1] intervals, with f0=fmin. We also divide the search space into a lot  of "cells
point x inside each cell. For each cell we compute f(x) and count +1 for the class i if f x f fi i( ) ∈[ [+, 1  (or f fi i, +[ ]1

if fi+1=fmax).
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So we finally have n numbers ci. We cumulate them by c ci j

j

i
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1

, so that each c’i is finally an estimation 

ξ(fi).

In order to compare the three functions, we normalize the results by dividing them by n.

Results and comments

As we can see on Figure 1, we have three typical shapes. If we define ε ε
'

max min

=
−f f

, each curve gives us in

fact an estimation of how difficult it is to find a solution by chance, for a given ε’. For the three functions, it 
course very easy (normalized solution area size almost equal to 1) as long as ε’ is big enough.  But when ε’ is
decreasing, we clearly see some differences.

Was do say us the curves ? For all functions, they of course say the difficulty is
Sphere function, the curve says  it is increasing in a quite « normal » way (i.e.
function, it says it is first quite easy (at the very beginning a bit more difficult
far easier)  and then suddenly far more difficult for small ε’ values. For the Rastrigin function, it is a
than for the two others (except at the very beginning), but it becomes a bit easier ’
values.
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Figure 1. Difficulty to find a solution versus admissible error

Now, of course, we usually are not looking for a solution purely at random: w
« intelligent » algorithm which find  « interesting » positions  and try to improv
results suggest, in particular, is that for some functions, it is more efficient to 
random. Below, we will try to see more precisely why.

Efficiency and success rate

Method

Now we use the three algorithms : Random, Constricted PSO, and Adaptive PSO. A move
"successful" if the new position is strictly better than the best one ever found so fa

At each time step t we count the total number of objective function evaluations e(t) (i.e. the number of moves
for there is no additional local search) and the total number of successful moves s(t). Then we simply compute
the success rate s(t)/e(t) (said « cumulated », for it takes into account all moves from the 
only the moves during the current time step).
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Results and comments

For each function,  and each algorithm, the stop criterion is an admissible error ε equal to 10-5. As we can see o
the Figure 2, the Adaptive method is always better, for it finds an admissible solution 
is here not the point. The point is that for Rosenbrock 2D and Rastrign 2D, the ran
beginning, to find some interesting positions. It is particularly clear for  the 
compare with Constricted PSO. Nevertheless, the good news is that even for this ca
beginning,  Adaptive PSO is almost as good as the random search. This is in fact bec
times to times new particle almost at random [CLE 01a].

So, in some cases, it would be better to begin with pure random moves. However, yo
cases, and how long you should do that, and, as we can clearly see, using the rand
gives very bad results. So, finally, it appears Adaptive PSO is a good compromise
intuitive idea seems to be right: the more information you use, the more efficient you

However, it is not so obvious, for using information is not at all costless, so, if 
on the results bu also on the cost to obtain them,  the function "efficiency vs i
always be increasing, and, more precisely, may have a maximum. Among other things, w
in Part 2.
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Figure 2. Cumulated success rates for three functions and three methods


