
SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATIONMaurie.Cler�WriteMe.omVersion 2006-11-06 1. IntrodutionHere are just a few ideas about PSO. Some of them are so razy that they might work. Some others seem reasonablebut probably do not work very well. 2. PSO equivalene2.1. De�nition. Two objetive funtions f and g on the same spae are PSO equivalent if for all x and all y we have
f (x) < f (y) ⇔ g (x) < g (y) . It is almost obvious that this relation indeed is an equivalene relation. For a givenPSO version, we an note it f ∼ g.Atually this de�nition is interesting only for PSO versions whose movement equations do not use values like f (x)but only order relations like f (x) < f (y). This is the ase of all �lassial versions�, and the ase of FIPS, the FullyInformed Partile Swarm we study below. We do suppose here we are working with suh a PSO.2.2. Properties.2.2.1. Equalities. We immediately have f (x) = f (y)⇔ g (x) = g (y).2.2.2. Minima. If f ∼ g then the two funtions have the same loal minima. This is quite straightforward. A loalminimum x∗ is so that for all positions �around� it, the funtion value is higher. More preisely, in dimension 1

∃δ, ∀ε < δ, f (x∗) < f (x∗ + ε)Therefore we have also g (x∗) < g (x∗ + ε) under the same ondition. So any loal minimum of f is a loal minimumof g. And vie versa.2.2.3. Trajetories. An important result is that for PSO equivalent funtions the trajetories of the partiles areexatly the same. It is quite simple to see why. Let us onsider the anonial following pseudo-ode that desribeshow a partile is moving:1) at time t onsider some known positions p1, . . . , pN . Optionnaly selet just some of them (for example the bestone(s)), thanks to relations like f (pj) ≤ f (pi).2) ombine the urrent veloity, the urrent position x (t), and the hosen pi to de�ne the new position x (t + 1)3) if this new position is better than a given pk(typially what it is alled the best previous position of the partile), i.e. if f (x (t + 1)) < f (pk) , then replae pk by x (t + 1)As we an see none of these steps is modi�ed for an equivalent funtion g. In step 2 the hosen pi are the sames,and in step 3 the ondition is the same. It means that we an replae a �tness funtion by an equivalent one easierto ompute. Of ourse the �tness values are not the same, and if the stop riterion is something like f (x) < ε theproess won't stop at the same time for g. In partiular if around the optimum we have g (x) < f (x)it stops too early.So from time to time it is still neessary to ompute the �real� �tness value f (x) just to see if the searh has to beontinued. However if the stop riterion is a maximum �searh e�ort�, like the number of �tness evaluation, we don'teven have to do that.2.3. Examples. All funtions like
f (x) =

∑
(xd − δd)

2kare PSO-equivalent for any k ∈ N . Also for any funtion with a �nite number of disontinuity points there are anin�nity of linear piee-wise approximations that are PSO-equivalent to it.Also all funtions like a + bf with b > 0 are equivalent to f .Let H be the searh spae, and H ′ = f (H) ⊂ R. Then for any funtion h stritly inreasing on R′ we have h◦f ∼ f .Three suh equivalent funtions are shown on �gure 2.1.2.4. Geometrial interpretation. *** TO COMPLETE ***Two PSO equivalent funtions have the same �level lines� representation.1
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Figure 2.1. Three PSO equivalent funtionsPair α1,1 α1,2 α2,1 α2,2 Equivalene1 0.8 1 10 10 0.9952 0.8 1 50 10 0.9913 1 0.5 10 2 1.000Table 1. Fuzzy PSO equivalene of ombinations of two gaussian kernels
2.5. Fuzzy equivalene. PSO equivalene is useful for performane predition (as the moves are the same for twoequivalent funtions, it is easy to ompute the performane one one of them knowing it for the other). However it istoo restritive. So a better tool is fuzzy equivalene, whih assign a truth value to the assertion �f is equivalent to g�.Let us onsider �rst a �nite searh spae Ωwith N elements. This an be noted |Ω| = N . For eah pair of elements
{x, y}we de�ne a funtion δ

{
δ (x, y) = 1 if f (x) < f (y) and g (x) < g (y)

= 0 elseThe truth value of the fuzzy PSO equivalene is then de�ned by
1

|Ω| 2
∑

Ω2

δ (x, y)

2.5.1. Example. As any �reasonable� funtion an be approximated by a linear ombination of Gaussian kernels, it isinteresting to ompare how muh two suh approximations are equivalent. Kernel 1 is de�ned by k1 = N
(
2,
√

2
) ,and kernel 2 by k2 = N

(
4,
√

0.2
). Amongst all funtions de�ned by fi = αi,1k1 + αi,2k2we onsider the bimodal oneson x1and x2 with x1 < x2 and fi (x1) < f (x2). On what extent are they PSO equivalent? As we an see on Table 1and on �gure 2.2, even some apparently quite di�erent funtions are equivalent on a great extent.
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(a) Pair 2, equivalene 0.991
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(b) Pair 3. Equivalene 1.000Figure 2.2. Two examples of fuzzy equivalent funtions2.6. Funtional PSO equivalene. *** TO DO ***Two funtions f and g are said funtionally PSO equivalent if there exist a funtion h with some speial propertiesso that h ◦ g ∼ f . We have seen the ase h = identity, but of ourse we are now studying something more general.



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 43. Gaussian-equivalent landsapeLet f be the �tness funtion de�ned on the searh spae H . We are now trying to de�ne an approximation f̃ of fas a ombination of semi-gaussians kernels, so that the distane between f and f̃ is as small as possible. The distanemay be √
ˆ

H

(
f (x)− f̃ (x)

)2For eah optimum oi = (oi,1, ..., oi,d, ..., oi,D) and for eah dimension d we de�ne �rst a monodimensional funtion
gd by 




gi,d (xd) = N
(
oi,d, σ

+
i,d

)
(xd) if xd ≥ oi,d

= N
(
oi,d, σ

−
i,d

)
(xd) elsewhere N (a, b)is the lassial Gaussian (Normal) funtion with a mean equal to a, and a standard deviation equalto b. If x = (x1, ..., xD) we de�ne then the near-gaussian D-approximation related to this optimum by

gi (x) = f (oi)

D∏

d=1

gi,d (xd)for a maximum and by
gi (x) = f (oi)

(
1−

D∏

d=1

gi,d (xd)

)for a minimum.We de�ne then an approximation g of f by
g (x) = gi (x)in whih i is then rank of the optimum that is the nearest one of x. So g is depending on the parameters σ+

i,d and
σ−

i,d, and as said, we �nally de�ne the Gaussian-equivalent as the g whih is the best approximation.4. Equivalent PSOs*** TO DO ***This is almost the dual notion of PSO equivalene. Two PSO variants are said equivalent for a given funtion f ,or f-equivalent, if they have the same behaviour when looking for the optimum. Now, of ourse, the point is to de�newhat �same behaviour� means. We may interested only on the best �tness value vs number of funtion evaluations,or we may want something more preise, like similar trajetories.5. Fully Informed Partile Swarm (FIPS)5.1. Desription and equations. The �rst FIPS version a probably been de�ned in [1℄. It has been studied in [2℄.Let us onsider a swarm of S partiles in searh spae of dimension D. As usually in PSO we de�ne the followingmathematial objets:
xi (t) = (xi,1 (t) , . . . , xi,d (t) , . . . , xi,D (t)) the position of partile i at time t
vi (t) = (vi,1 (t) , . . . , vi,d (t) , . . . , vi,D (t)) the veloity of partile i at time t
pi (t) = (pi,1 (t) , . . . , pi,d (t) , . . . , pi,D (t)) the best previous position of partile i at time t
Ni the list of partiles that inform partile i. In pratie this is a list of integer numbers of [1, S]. Note that wesuppose here it is not depending on t. The size of this set (the number of elements is noted by |Ni|. The jth elementof this list is noted Ni,j .
w and c, two real numbers. Let us all them here �rst and seond on�dene oe�ients.At last ũ is a realisation of a given random distribution R. We do suppose here that this distribution is the uniformone on [0, u] .Now the iterative movement equations are, for eah partile i and for eah dimension d:(5.1) 




vi,d (t + 1) = wvi,d (t) +

1

|Ni|

|Ni|∑

j=1

c̃
(
pNi,j ,d (t)− xi,d (t)

)

xi,d (t + 1) = vi,d (t + 1) + xi,d (t)Compared to lassial PSO here the partile is not looking for its best informant (neighbour), but take them allinto aount. Note that the �weight� of eah ontribution is the same (i.e. 1/ |Ni|). We may think at something like



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 5�the better the neighbour the bigger the weight�, but if the weight were depending on, say, f
(
pNi,j

), it would be notonsistent with the onept of PSO equivalene. Moreover it seems suh a weighted variant is not really better [2℄.5.2. Deterministi form analysis. For the mathematial analysis we need �rst to onsider a simpler version:
• deterministi, i.e. c̃ = c
• global, i.e. Ni = (1, . . . , S). Eah partile �sees� all the others.Then, if we de�ne(5.2) Pd (t) =

c

S

S∑

j=1

pj,d (t)the system 5.1 beomes(5.3) {
vi,d (t + 1) = wvi,d (t) + Pd (t)− cxi,d (t)
xi,d (t + 1) = wvi,d (t) + Pd (t) + (1− c)xi,d (t)Note: in what follows we do onsider that all partiles are moving on the same time (parallel mode), and not eahat a time in a loop, as in most of PSO versions. It is worth to note, though, that this mode is a bit less e�etive thatthe sequential one [3℄.5.2.1. �Di�erential� expliit representation. At a given time t we onsider two partiles, i and k, the di�erene of theirveloities, and the di�erene of their positions. With quite understandable notations, and by using system 5.3 at times

t and t− 1, we have then(5.4) [
∆i,kvd

∆i,kxd

]

t

=

[
w −c
w 1− c

] [
∆i,kvd

∆i,kxd

]

t−1So we �nally have(5.5) [
∆i,kvd

∆i,kxd

]

t

=

[
w −c
w 1− c

]t [
∆i,kvd

∆i,kxd

]

0Let us de�ne(5.6) M =

[
w −c
w 1− c

]It is not that di�ult to exatly ompute M t and some onvergene onditions, but here we just need to say thatits general form is
[

mt,1,1 mt,1,2

mt,2,1 mt,2,2

]We an simply initialise the veloities to zero. After all, if the positions are initialised at random, after the �rsttime step we do have anyway random veloities. As a result, we an derive a very interesting relation(5.7) ∆i,kxd (t) = mt,2,2∆i,kxd (0)Let us see now what it means.5.2.2. The swarm as a polyhedron. Aording to equation 5.7, if we ompute the Eulidean distane between partiles
i and k, we �nd

‖xi − xk‖t = mt,2,2 ‖xi − xk‖0Note that the oe�ient mt,2,2 is not depending on i nor on k. In other words, at eah time step all distanesbetween partiles are multiplied by the same oe�ients. If we see the partiles positions as verties of a polyhedrononly very few geometrial transformations and their ombinations are therefore possible:
• saling (expansion, ontration)
• translation
• re�etion
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(a) Initial position (b) Translation+expansion

() Translation+ontration (d) Translation+ontration+re�etionFigure 5.1. Deterministi global FIPS on Sphere/Parabola 2D. First four steps with a swarm of three partilesNote that as equation 5.7 is valid for eah dimension independently, even rotation is not admissible: it is easy to seethat for any pair (i, k)all vetors (xi − xk)t are parallel to (xi − xk)0, for any t value. In �gure 5.1 we an see the four�rst steps of a three partile swarm looking for the minimum of the two-dimensional Sphere/Parabola funtion.5.2.3. Some maths for fun. The eigen values of the matrix M (equation 5.6) are given by
{

∆ = (w−c+1)2

4 − 4w

λ = w−c+1
2 ±

√
∆
2For usual w and c values the ondition ∆ < 0 holds, and we then have |λ| = √w. So the two eigenvalues are

{
λ1 =

√
w (cos (θ)− i sin (θ))

λ2 =
√

w (cos (θ) + i sin (θ))with cos (θ) = w−c+1
2
√

w
, and sin (θ) =

√
−∆

2
√

w
. On the other hand there exists a matrix A so that M = AΛA−1, with

Λ =

[
λ1 0
0 λ2

]. So we have M t = AΛtA−1 . After some boring aluluses, it means that if the initial veloity isnull, the value of the term mt,2,2 is given by
mt,2,2 =

√
w

t
(

1− c− w√
−∆

sin (tθ) + 2 cos (tθ)

)Its dereasing osillation is shown on �gure .
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Figure 5.2. FIPS (deterministi). A typial evolution of the di�erene between two oordinates oftwo partiles on a given dimension5.2.4. FIPS and Simplex Method. If you know a bit about non-linear optimisation by Simplex Method, what has beensaid above should sounds familiar: the admissible operations (expansion, ontration, re�etion) are almost the same.However FIPS is also using translation, and there is no need of expliit reevaluations rules. Moreover, in the ompleteFIPS form some parameters are random, as the Simplex Method is deterministi (exept the initialisation).5.3. Random form analysis. ** TO DO ** Replae �sum of random variables� by �Gaussian random variable� (seeTCL) 6. Central fore PSO6.1. Desription and equations. A more general PSO version an be de�ned by using a gravitational analogy. Theidea is not ompletely new (see for example [4℄) , but an be generalised. The spae is supposed to be �visous�. Itmeans during eah time step ∆t the veloity is multiplied by a positive oe�ient w smaller than 1. Let us suppose all
pi (t) are �bodies� of mass 1 inside the searh spae. The partile is attrated by these bodies, aording to a entralfore law. Let us say its mass is also 1. So the equations of movement are something like(6.1) 




vi,d (t + 1) = wvi,d (t) + γ∆t

|Ni|∑

j=1

pNi,j,d (t)− xi,d (t)∥∥pNi,j
(t)− xi (t)

∥∥α

xi,d (t + 1) = vi,d (t + 1)∆t + xi,d (t)When ∆t = 1 , γ = c/ |Ni|and α = 0, we have exatly the deterministi form of FIPS. However this form is moreinteresting. For example, even if not any pi is modi�ed (no improvement) it is well known that as soon as α > 0, and
|Ni| ≥ 3, the trajetory of the partile is haoti: there is no need of randomness. Stritly speaking it depends on thefrition oe�ient. High frition (small oe�ient) implies less haos, but if we set w to about 0.7, and c to about 1.4,as in lassial PSO, we do easily obtain haos.Also, ontrarily to FIPS (and to any lassial PSO version), the partile speeds up when its distane to a pi isdereasing: it is not easily trapped into a loal minimum.There is a drawbak, though: we have to de�ne ∆t. And, in partiular, we usually an not just set it to 1, for itis often a too high value that does not preserve the dynami of the underlying ontinuous system, as we an see on�gure 6.1. Atually a good way may be an adaptive ∆t, dereasing funtion of the veloity module.Another drawbak is that the term ∥∥pNi,j

(t)− xi (t)
∥∥ of equation 6.1 an perfetly be equal to zero, or at leastvery small. There are many ways to ope with this problem (the simplest one is to just not take into aount �bodies�

pi that are too near of the partile), but none of them is ompletely satisfying.6.2. Tests and results. ** TO DO ** Preliminary tests are not very promising. The dissipation funtion hasprobably to be modi�ed (see setion 7 Dissipative system approah).7. Dissipative system approah*** TO COMPLETE *** Inspired by [5℄.
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traj_alpha1_m1_Dt1.jpg

(a) alpha=1, Dt=1
traj_alpha1_m1_Dt01.jpg

(b) alpha=1, Dt=0.1
traj_alpha2_m1_Dt1.jpg

() alpha=2, Dt=1 traj_alpha2_m1_Dt01.jpg(d) alpha=2, Dt=0.1Figure 6.1. Trajetories with entral fore laws in visous spae. The smaller ∆t, and the higher α,the easier haos ours7.1. Energy. When plotting the total energy of the swarm (kineti+potential) it appears that it globally deays withjust some small osillations (see �gure 7.1). Note that the veloity of a partile is given by x (t) − x (t− 1), so it isde�ned even for PSO versions without any expliit veloity, like Bare-Bones.Suh a deay means that the dissipation funtion g in the Hamiltonian H of the system is quite similar to a frition.If the value of the global minimum is x∗then its root is |f (x∗)|, for on the long term all veloities tend to zero. Wean write
g (|f (x∗)|) = 0

(a) Standard PSO (b) Gaussian Bare-Bones PSOFigure 7.1. Typial energy evolutions. Rastrigin 30D, 100000 �tness evaluations7.2. Correlations between partiles.



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 97.2.1. Coupling to the queen. How is the swarm oupled to its entre of mass (the �queen� as de�ned in [6℄)? Aswe an se on �gure 7.1, if we plot the energy of the queen and ompare it to the one of the swarm, there is a highorrelation after a while, but not on the beginning. It is not visible on the �gure, but here the kineti energy is quitesmall ompared to the potential one. It means the potential energy of the queen (de�ned as f (queen)S is almostequal to the sum of all potential energies of the partiles.So it might be possible to dramatially redue the number of �tness evaluations: after a while most of the time justone for the queen (and the �tness value is also assigned to all partile), and from time to time for the whole swarm.Of ourse the main di�ulty is to preisely de�ne �after a while� and �from time to time�.7.2.2. Relative trajetories. It may be interesting to see how partiles are �ying around the queen, i.e. their relativetrajetories. 8. Stagnation and progression phasesIn all iterative algorithms an iteration an be said to be �suessful� (progress) if the best known �tness value hasdereased (when looking for a minimum), or �stagnant� if not. We are studying here the stagnation/progress sequenealong a run. Let us de�ne a oding: a sequene like (1,−2, 3...)means �progress during one iteration, stagnation during2, progress during 3, ...�.Suh a study may give us some insights on the dynamis of the algorithm, and even on its quality. For example,if there are only progresses (like say deterministi Gradient Desent), we are sure the algorithm is bad as soon as thefuntion is multimodal. More generally, and intuitively, a good algorithm (meaning good on a large set of problems)should probably have a�balaned� stag/prog sequene.On �gure 8.1 we an see a typial sequene given by Standard PSO 2006 [7℄ on a lassial problem. It seems itis indeed balaned, but plotting the histogram is more informative. In �gure 8.2 we have some suh histograms, forStandard PSO, FIPS (equation 5.1), and Gaussian Bare-Bones PSO (see below equation 10.1) . Although there areon the whole and in all ases as many stagnations as progresses, the behaviours are learly very di�erent, so it mightpossible that suh histograms are �signatures� of the algorithms.For example, for a given problem, is there a relation between the performane of a PSO variant, and the skewnessof its stag/prog sequenes? Table 2 gives an idea of the performane over 50 runs (mean of the best values after 10000�tness evaluations for Parabola/Sphere, and after 40000 for Rastrigin), and of the mean skewness of the orrespondingstag/prog sequenes. Parabola on[-100,100℄30 Rastrigin on [-10,10℄30Standard PSO 0.00011 (0.03) 67.08 (-23.09)FIPS 0.000092 (0.07) 178.92 (-3.58)Bare-Bones 0.00013 (-1.6) 61.31 (-20.43)Table 2. Performane of three PSO variants, and mean skewness of the stagnation/progress sequenesFirst of all we an note that �gures 8.2 do not always give a good idea of the real skewness. For example on b), thebig skweness is in fat due to a few very long stagnation sequenes (typially 50 iterations) that do not appear on the�gure. Seond, on these small examples performane there is no lear relation ship between skweness and performane.

Figure 8.1. Stagnation-Progression sequene. Parabola (Sphere) 30. Standard PSO
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(a) Standard PSO. Skewness = 0.03 (b) Standard PSO. Skewness = -23.09

() FIPS. Skewness = 3.67 (d) FIPS. Skewness = 2.02

(e) Gaussian Bare-Bones. Skewness = -1.6 (f) Gaussian Bare-Bones. -20.43Figure 8.2. Stagnation-Progression histograms. Standard PSO, FIPS, Gaussian Bare-Bones9. Distorted Searh Spae9.1. Centre bias. The starting point is a PSO variant with a bias in favour of the entre O of the searh spae H, forexample Standard PSO without any lamping (i.e. when a partile leaves the searh spae, its position is not modi�edand not evaluated). Let us suppose there is a metri de�ned on H, so that the distane between two points an bealulated. We also de�ne a mapping Φ of H on itself so that
• Φ is a bijetion. So Φ−1 does exist
• Φ (O) = O
• if x is on a bound then Φ (x) = x
• for any other point we have distance (Φ (x) , O) < distance (x, O)It means the searh spae is ontrated towards its entre. Now, for a given �tness funtion f we de�ne g by g (y) =

f
(
Φ−1 (y)

). Then if y∗ is the position of a global minimum of g, the position of a global minimum of f is x∗ = Φ−1 (y∗).The idea is to de�ne Φ so that �nding y∗for g is easier than diretly �nding x∗ for f . Let us try with a simple ontinuousmapping (homeomorphism). If x = (x1, . . . , xd, . . . , xD)we de�ne Φ (x) = (φ (x1) , . . . , φ (xd) , . . . , φ (xD)) with
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φ (xd) = ∆dsign (xd)

(
1−

(
1− xd

∆d

)α)

where ∆d =
xmax,d−xmin,d

2 . We an have an idea of the result on �gure 9.1.

(a) Original Eulidean spae (b) Contrated spaeFigure 9.1. Simple spae ontration, α = 0.2

Now the objetive funtion, as �seen� by the swarm is of ourse also di�erent. By onstrution the minimum isnearer of the entre of the searh spae (exept if it was on the bounds), but the global shape is not the same, as wean see on �gure 9.2.
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(b) Rastrigin 1D
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(d) Rastrigin 2DFigure 9.2. Fitness funtion deformation. α = 0.2Of ourse the question now is to see if the performane is better. Let us ompare results on two funtions:
• Parabola on[-100,100℄30 , o�set=50
• Rastrigin on [-10,10℄30 , o�set=5and over 50 runs (mean of the best values after 10000 �tness evaluations for Parabola/Sphere, and after 40000 forRastrigin).

(a) Parabola (b) RastriginFigure 9.3. Performane by using a ontrated searh spae and Standard PSO



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 139.2. Bounds bias. Now we try to take advantage of a bias in favour of the bounds, for example indued by using alassial lamping method: when a partile tends to leave the searh spae along dimension d, the oordinate is set tothe bound value, and the orresponding veloity omponent is set to zero.

(a) Original Eulidean spae (b) Expanded searh spaeFigure 9.4. Simple spae expansion, α = 1.5

Figure 9.5. Performane by using an expanded searh spae, and Standard PSO without lamping9.3. Comments on results. In both ases there is an e�et, but not very lear. It seems that taking advantage of abias in favour of the bounds is a bit more e�etive. However as there is always also an intrinsi bias in favour of theentre it may be better to use another mapping that simultaneously ontrat what is near of the enter, and expandwhat is near of the bounds.Another point is that when ontration is too important the algorithm is not stable. It seems quite normal, for asmall move in the ontrated spae may be in fat a very big move in the real spae. Atually, for this preise reason,the method may not work at all. We have to de�ne a biased PSO and a mapping so that the �nal algorithm is indeedan improvement. 10. PSO and Information TheoryWe are onsidering here �lassial� PSO, i.e. with a onstant swarm size S and with veloities. The swarm has Spartiles positions xi, S memories pi, S veloities vi. At eah time it then stores 3S positions (2S diretly, and Sthanks to the veloities). More preisely, for eah partile i the known positions are xi(t), pi(t), and xi(t− 1) (thanksto xi(t− 1) = xi(t)− vi(t)).



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 14At eah time the swarm "learns" S new positions. How many does it forget? If there is no improvement, exatly
S (the previous positions): the quantity of information is onstant. If there are m improvements (i.e. for m partiles
i we have f (xi (t + 1)) < f (pi (t))) then for eah one the data are xi(t + 1), pi(t + 1) = xi(t + 1), xi(t). It means wehave temporarily lost m informations (positions).After that, if the partile does not improve its pi, we have again three di�erent informations x(t + 2), p(t + 2) =
p(t + 1) 6= x(t + 2), x(t + 1). So, on the whole, the number of known di�erent positions is osillating between 3S and
2S: 3S when there is no improvement at all, 2S when all partiles improve their pi.In passing, it means it would probably be better to de�ne a "Constant Informed PSO", in whih the number ofdi�erent known positions is onstant.Anyway, as soon as the dimension is high, the volume of the suessful possible positions is very small omparedto the volume of the searh spae. There is no hane to �nd one just by sampling at random 2S or even 3S positionsat eah time, aording to an uniform distribution. But preisely, this sampling is not uniform. So it an work (whenit works) only for two reasons:(1) the �tness landsape is so that the assertion "nearer (of the optimum x∗) is better" has a truth value not toosmall. Or, in other words, when sampling a point at random, the probability it is in the attration basin of

x∗ is not too small(2) at least after a given time t, and at least for a given pi(t) inside the attration basin, there exists xj so thatthe probability that is on average greater than 0.5.Of ourse we don't know when a pi is in the attration basin. So to be sure the ondition 2 should be in fat: for any
pi, there is at least one xj so that the probability distance (xj (t + 1) , pi(t)) < distance (xj (t) , pi(t)) is greater than0.5. Or, roughly speaking "for any memory there is at least one partile that tends more or less towards it".For example let's onsider the Gaussian (Normal) bare-bones PSO de�ned by(10.1) x (t + 1) = N

(
pi + gi

2
, w |pi − gi|

)in whih gi is, as usually, the best known position in the neighbourhood of the partile. It means a good w valueshould be about 0.7. Atually it seems the best results are obtained with the "magi" value 1/ (2 ln (2)) ≃ 0.72 foundin the Stagnation Analysis [8℄. There might be something �deep� here ...11. Constant Informed PSOKeep onstant the number of di�erent known positions, for example by memorizing two �best� positions instead ofone: p (t)and p′ (t)and by applying the following rules:
p (0) = p′ (0) = x (0)
p (t− 1)→ p′ (t)if f (x (t)) < f (x (t− 1))then x (t)→ p (t) else p (t− 1)→ p (t)So at eah time after 0 we usually know two di�erent positions, either x and p = p′ or x = p and p′. Of ourse themovement equations should now taking into aount not only the lassial {x, p, g}where g is the neighbourhood best,but {x, p, p′, g}. Note that we always have

f (x) ≥ f (p) ≥ f (p′) ≥ f (g)Option 1: if the partile has improved its position then use {x, p′, g} else use {x, p, g}.Option 2: use {x, p, p′, g}

vi,d (t + 1) = wvi,d (t) + λc̃ (pd (t)− xi,d (t)) + λ2c̃ (p′d (t)− xi,d (t)) + c̃ (gd (t)− xi,d (t))with
1 + λ + λ2 = 2 i.e. λ =

(√
5− 1

)
/2The idea is �tend towards g�, a bit less �towards p�, and even less �towards p′�. Aording to table 3 Option 1is not interesting, but Option 2 is. Note that the idea to tends more towards g than towards p (but not by takinginto aount their �tness values), might be applied to lassial PSO or, more interesting, to FIPS (by sorting the

piaording to their �tness values). 12. Quantisation12.1. Desription and equations. Working on a quantised searh spae has at least two advantages ... and onedrawbak. On the one hand(1) if the �tness landsape has a global urvature, by using quantisation you should quite quikly redue the searharea to a smaller one around the optimum.



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 15Parabola on[-100,100℄30 Rastrigin on [-10,10℄30Standard PSO 0.00011 (0.03) 67.08CI option 1 0.028 134.4CI option 2 0.00061 49.54Table 3. Constand Informed PSO(2) the partile may also easily esape a loal optimum, for it simply does not �see� it. This is a kind of �tunnele�et�.Now, on the other hand, you may never �nd an aeptable position if the optimum is too far from a quantised position.So we not only have to de�ne a quantisation step, but also to adapt it aording to what the swarm learns about thesearh spae during the proess. Roughly speaking the rule should be something like �if no improvement, derease it,and if improvement, inrease it�. Now the main di�ulty is to mathematially de�ne eah term of suh a rule.In the ontext of Tribes [3℄, a parameter free PSO whih is by nature ompletely adaptive, �improvement� is alreadyperfetly de�ned, and is usually loally di�erent for eah tribe. However we try here to do something simpler, in theontext of Standard PSO. So we use a more lassial de�nition: �improvement� just means either �improvement of theglobal best� (global adaptation), or �improvement of the personal best� (individual adaptation). Note that in this lastase eah partile has its own quantisation.Now, we need a formula to de�ne how to inrease/derease the quantisation step. As a �rst approah, we just tryhere a simple deterministi one. Let q (t) be the relative step at time t. It means that on eah dimension d the realstep is Qd (t) = q (t) (xmax,d − xmin,d) /2. The adaptation rule is de�ned by




q (0) = any value in ]0, 1[
q (t + 1) = MIN (s1q (t) , q (0)) , s1 > 1 if improvement

= s2q (t) , s2 ∈ ]0, 1[ if no improvementAt last when a new quantisation is used it is also useful to partly re-initialise the veloities, partiularly when thestep has been inreased: if the veloity is too small the partile may not move at all. In pratie we use here thefollowing formula on eah dimension
{

u = U (0, Qd)− U (0, Qd)
|u| > vd ⇒ vd ← u12.2. Tests and results. Note that, of ourse, results may easily be extraordinary good when the solution is on theentre of the searh spae, or even right on a quantised point, as for most of test funtions. So we use an o�set,and one whose relative value is irrational, for example 1/

√
3 ≃ 0.577. For the same reason, the worst ase is tohoose a transendant number for q (0), for example e/10 ≃ 0.27. On the ontrary it may be a good idea to hoosea transendant number for one of the saling oe�ients. On table 4 we have set s2 = π/4 ≃ 0.79. As we an see itseems quantisation may slightly improve the algorithm.

s1 Parabola on[-100,100℄30 Rastrigin on [-10,10℄300 0.000230 86.961 0.0000134 89.351.5 0.000195 86.202 0.000079 84.49Table 4. Performane of quantisation. Mean of the best values over 50 runs (10000 evaluations/runfor Parabola, 40000 for Rastrigin). In the ase s1 = 0 there is in fat no quantisation at all . When
s1 = 1 it means the step size an not inrease13. Time asymmetry** TO DO **given x(t)=x*, �nd the probability distribution of all possible x(t-1), then of all x(t-2), ..., and, �nally, the distri-bution of the suessful starting points. May be easier to do with FIPS, and even easier with Bare-Bones. Expetedresult: a non uniform distribution that should be used for initialisation. As PSO has a �zero� bias, a good initialdistribution should probably be less dense around the entre.



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 16Evaluation probability Parabola on[-100,100℄30 Rastrigin on [-10,10℄301 0.000230 86.960.75 0.000056 87.050.5 0.00071 84.360.25 0.000240 90.77Table 5. Performane with probabilisti evaluation. Relative o�set1/
√

3 ≃ 0.577. Mean of bestvalues over 50 runs. 10000 evaluations for Parabola, 40000 for Rastrigin14. Why is Sphere linear?Experimentally, when we plot ln (f (p (t)))vs FE (number of �tness evaluations), we �nd a urve whose mean slpoeis learly (dereasing) linear when f (x) is de�ned by something like xα with α > 0. It has probably something to dowith the PSO equivalene between xαand |x|. Let us examine what happens when the dimension is simply 1.14.1. Exatly true for Gradient Desent. With lassial gradient desent (GD), and f(x) = xα we have
x (t) =

α− 1

α
x (t− 1)So f (x (t)) = α−1

α

tα
x (0)

α . When taking the logarithm we indeed obtain
ln (f (x)) = α ln

(
α− 1

α

)
t + α ln (x (0))i.e. a line whose slope is α ln

(
α−1

α

).14.2. More generally. Let ũ be the expetation of the random variable u (we do suppose here it exists). By analogywith the previous analysis, if we an prove that we have
p̃ (t) = β̃p̃ (t− 1)then we would have

˜ln (f (p (t))) = αl̃n (β)t + α ln (p (0))*** TO COMPLETE *** 15. Better to not evaluate?When a partile tends to leave the searh spae it is quite usual to lamp the position, and sometimes the veloity,to an aeptable value. However a pretty good and simpler method is to do nothing speial and to not evaluate theposition. Of ourse it means the �tness value is wrong but sooner or later the partile should be attrated inside thesearh spae anyway.Now there is no theoretial reason to use this method only when the partile leaves the searh spae. After all youan de�ne it quite arbitrarily. Sometimes �tness evaluation is very ostly so the obvious question is �What happensif I not always evaluate the new position?� The idea is then to evaluate only with a probability of say 50%. We anthen perform two times more moves for almost the same ost. If the onvergene of the algorithm is equivalent or evenslightly deteriorated, it is interesting. As we an see on table 5 it seems it is indeed the ase: for the same number of�tness evaluations we easily �nd a signi�antly better result for Parabola, and a slightly better one for Rastrigin.16. Weighted Bare-BonesIn (Gaussian) Bare-Bones PSO, the next position is simply given by
x (t + 1) = N

(
p (t) + g (t)

2
, |p (t)− g (t)|

)where N (µ, σ)is the Gaussian distribution with a mean equal to µ and a standard deviation equal to σ. However itan be easily found experimentally that replaing |p (t)− g (t)| by w |p (t)− g (t)| with 0 < w < 1 gives better results.Atually a short theoretial analysis is even possible. The idea is that the next position should satisfy two onditions,in probability:
• not too far from p (t)
• but nevertheless nearer of g (t)



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 17t x1 v1 x2 v20 0.1 -0.9 0.9 0.91 -0.8 1.15 1.8 -1.052 0.35 0.07 0.75 -1.413 0.43 -0.6 -0.66 1.154 -0.17 -0.16 0.49 0.555 -0.33 1.18 1.04 -2.046 0.85 0.1 -1 2.617 0.95 -1.62 1.61 0.768 -0.68 -1.17 2.37 -7.769 -1.84 0.84 -5.39 -5.5910 -2.69 4.97 -10.97 29.9911 2.28 1.4 19.01 -34.3612 3.68 -9.72 -15.35 6.5513 -6.05 -7 -8.8 4.7214 -13.05 34.4 -4.08 7.97Table 6. When �no lamping and no evaluation� implies �no stop�.It means that x (t + 1) should be in [p (t) , g (t)]with a probability just a bit bigger than 0.5. If we de�ne σ =
w |p (t)− g (t)|we then just have to �nd w so that

1√
2π

ˆ 1/2w

−1/2w

e−v2

dv > 0.5By using the normalizes inverted umulative normal distribution, we �nd w < 0.74. If we assume that w shouldjust balane the behaviour between exploration and exploitation, we may set it preisely to this value.17. No lamping and no evaluation: a false good ideaWhen a partile tends to leave the searh spae an usual way is to lamp it, and sometimes the veloity too.Something like ifxd > xmax,dthen{ xd = xmax,d

vd = −αvd, α ∈ [0, 1]Some people laim that there are two drawbaks:- it inreases the bias towards the enter of the searh spae- it osts one �tness evaluationNote that, though, this method is interesting when the solution is either near the enter of the searh spae or nearthe bounds.Another way is to simply do nothing: no lamping and no evaluation. Or, in other words, outside the searh spae,the partile see the landsape as �at, with a �tness value preisely equal to its urrent one. The underlying idea isthat it will ome bak soon, for it is �attrated� by some positions that do are inside the searh spae (for examplethe previous best and the loal best, for lassial PSO).Usually it works quite well. But not always. It may happen that all partile are outside the searh spae and fail toome bak in. In suh a ase, if the stop riterion is preisely a maximum number of evaluations, the program neverstops. Let us onsider a very small example. Dimension is 1, searh spae is [0, 1], �tness funtion is f (x) = x. Themotion equation is v (t + 1) = wv (t) + c̃ (p (t)− x (t)) + c̃ (g (t)− x (t)) with w = 0.72, and c = 1.48. As we an see onTable 6 the partiles tend to osillate, whih is quite normal, but as they are both outside the searh spae after time8, the osillations seem to inrease, again and again. It might be possible that, after a very long time, the partilesindeed ome bak, but even in suh a ase, the performane would be extremely bad.So it seems neessary either to give up this method, or to add another stop riterion, like a maximum number ofiterations.Atually there is another and more important reason for whih �no lamping� is a false good idea: it is less e�etive.Using any lamping method indeed indues more bias, but this is not a problem. A good method gives better result intwo ases: when the solution point is near of the bounds, or near of the entre of the searh spae, and similar resultelse (see my paper Con�nements and Bias for details).



SOME IDEAS ABOUT PARTICLE SWARM OPTIMISATION 1818. Rand(Rand(Rand()))By disussing with some people I found there is a quite ommon ununderstanding of some simple probabilityproblems. Here is one the them. It has some onnetions with optimisation, but basially it an be desribed asfollows.Let us onsider the two random variables:
x1uniform on [0, 1]
x2uniform on ]x1, 1]What is the distribution law of x2? Let us denote p (x2 < u)the probability that x2is smaller than u. We obviouslyhave

{
p (x2 < u) = 0 foru ∈ [0, x1]

= u−x1

1−x1

for u ∈ ]x1, 1]This is of ourse for a given x1. The probability density of x1is simply 1, so to �nd a formula not depending on
x1we just have to ompute the following integral

{
p (x2 < u) =

´ u

0
u−x1

1−x1

dx1

= u− (u− 1) ln (1− u)Atually, to estimate the probability of suess of some algorithms, it may be interesting to go further. Let x3 bea uniform random variable in [0, x2[. By de�nition, if x2 < u then x3 < u for sure. Else we have p (x3 < u) = u/x2.Note also that the probability density of x2is − ln (1− v) (i.e. limdv→0p (v < x2 < v + dv). In passing, we an thenompute its expetation




E (x2) =
´ 1

0
−v ln (1− v) dv

= − 1
4

[
2 ln (1− v)

(
v2 − 1

)
− v (v + 2)

]1
0

= 3
4For x3 we have immediately






D3 (u) = p (x3 < u) = u− (u− 1) ln (1− u)− u
´ 1

u
ln(1−v)

v dv
= u− (u− 1) ln (1− u) + u (Li2 (1)− Li2 (u))

= u− (u− 1) ln (1− u) + u
(

π2

6 − Li2 (u)
)where Li2is the dilogarithm. In partiular for u = 0.5 we have Li2 (0.5) = π2

12 −
ln2(2)

2 , and D3 (0.5) ≃ 0.68.The probability density for x3 is given by d3 (u) = π2

6 − Li2 (u). So we an ompute the expetation by
{

E (x3) =
´ 1

0
u
(

π2

6 − Li2 (u)
)

du

= 3
8 = 0.375Note - This result has been obtained thanks to a symboli alulus softwareLinksThe basi simplex method, http://www.multisimplex.om/simplex_b.htmNelder-Mead method, http://en.wikipedia.org/wiki/Downhill_simplexReferenes[1℄ J. Kennedy, �Bare Bones Partile Swarms,� in IEEE Swarm Intelligene Symposium, pp. 80�87, 2003. Fully informed PSO.[2℄ R. Mendes, Population Topologies and Their In�uene in Partile Swarm Performane. PhD thesis, Universidade do Minho, 2004.[3℄ M. Cler, Partile Swarm Optimization. ISTE (International Sienti� and Tehnial Enylopedia), 2006.[4℄ T. M. Blakwell and P. J. Bentley, �Dynami Searh with Charged Swarms,� in Geneti and Evolutionary Computation Conferene,(San Franiso), pp. 19�26, Morgan Kaufmann, 2002.[5℄ F. Shweitzer, W. Ebeling, and B. Tilh, �Statistial mehanis of anonial-dissipative systems and appliations to swarm dynamis.,�Phys Rev E Stat Nonlin Soft Matter Phys, vol. 64, p. 021110, Aug 2001.[6℄ M. Cler, �The Swarm and the Queen: Towards a Deterministi and Adaptive Partile Swarm Optimization,� in Congress on Evolu-tionary Computation, vol. 3, (Washington DC), pp. 1951�1955, IEEE, 1999.[7℄ PSC, �Partile Swarm Central, http://www.partileswarm.info.�[8℄ M. Cler, �Stagnation analysis in partile swarm optimization or what happens when nothing happens.,� teh. rep., 2005.


