
Discrete Particle Swarm Optimization: A Fuzzy Combinatorial Black
Box
Maurice.Clerc@WriteMe.com
2000/04/28

A small Fifty-fifty example

Figure 1. A Fifty-fifty example.

Let n n1 6, ,K be six finite lists of different integer numbers. Let ni j, be the j-th value in the list ni .

We want to find six such values, all different, so that we have n ni j
i

i k
i

, ,=
= =
∑ ∑

1

3

4

6

. This example is an

adaptation of the one you can find in (Kennedy 1997). In particular, I have added the condition
"all different", so that the problem is a bit more difficult.

Implicit Search Space
The Implicit Search Space is simply the list of the lists. Here, it is defined as
((0,1,2,3,4),(0,1,2,3,4),(0,1,2,3),(1,2,3,4,5,6),(0,1,2),(0,1,2,3,4))

If ni is the length of the list ni , the ISS generates the real search space which size is ni
i=
∏

1

6

,

(9000 here).

0
1
2
3
4

0
1
2
3

0
1
2
3
4

1
2
3
4
5
6 0

1
2

0
1
2
3
4

n1 n2 n3 n4 n5 n6

Crisp representation

Position and velocity
A "position" x is a list of 6 possibles values, the i-th value is chosen in ni .
Example: x=(1,3,2,6,2,4)

A "velocity" is an operator which, applied to a position, and calculated by a given algorithm,
gives another position.
Example: v = →() →() →() →() →() →()[]0 1 3 4 3 0 4 4 0 2 1 0, , , , ,
The condition " calculated by a given algorithm" is necessary, for two velocities can be
equivalent, and there is not necessary juste one "smallest" one.

Note that if we apply, say 0 1→(), to a value different from 0, nothing happens.
The size of a velocity, v , is tne number of components which are not equivalent to "do nothing",
(like 4 4→()). In the above example, the size is 5.

Operators for PSO equations
We use here the system

v t c v t c p x t c p x t

x t x t v t

i g() () ()

() () ()

+ = ⊗ () ⊗ () ⊗ ()
+ = ⊕ +







1

1 1

1 2 2o oΘ Θ

Equation 1. Moving a given particule.

where pi is the best previous position of the particule and pg the best previous position in the
neighbourhood (eventually the whole swarm). The four operators needed are

coeff_times_vel (⊗) : = (real positive coefficient, velocity) → velocity
vel_plus_vel (o) := (velocity, velocity) → velocity
pos_minuspos (Θ) := (position, position) → velocity
pos_plus_vel (⊕) := (position, velocity) → position

 Figure 2 is self explanatory, except maybe for coeff_times_vel.

Note that the operator coeff_times_vel is stochastic, and defined only for a coefficient between 0
and 1. For a coefficient greater than 1, say coeff=k+c, with k integer and c<1, we can simply use k
times vel_plus_vel and one times coeff_times_vel with c.

Here is how coeff_times_vel is computed for a coefficient c:
c c alea

c c i j i i

c c i j i j

∈[] = ()
≤ ⇒ →()  → →()
> ⇒ →()  → →()









⊗

⊗

0 1 0 1, , ' ,

'

'

Note also that vel_plus_vel is not commutative. In the algorithm I have written, it seems the best
way is to add velocities in increasing order (of size).

Figure 2. The four operators for a crisp combinatorial black box (examples).

Cost function
As usually, there are an infinity of possible cost function to minimize. Of course, the simplest one
is, as always, a binary good/no good function:

f x n n tax if twicei j k l
ii

() = − + >

=
==
∑∑1 0

0
4

6

1

3

 if

 else

, , _ _

but convergence is obviously difficult with such an almost non discriminatory function, so I use
the more reasonable one:

f x n n tax if twicei j k l
ii

() = − +
==
∑∑ , , _ _

4

6

1

3

where tax_if_twice is simply the greatest value in the ISS (6, here).

Example:
x

f x

= ()
() = − + =





1 3 2 6 2 4

7 12 6 11

, , , , ,

0 5

0 1

2 3

3 0

4 4

0 2

1 0

0 1

2 2

3 3

4 4

0 2

1 1

,

()

()

()

()

()

()

()

()

()

()

()

()

⊗

→
→
→
→
→
→

























=

→
→
→
→
→
→

























1

3

0

4

2

0

0

2

3

4

0

1

0 1

2 3

3 0

4 4

0 2

1 0

















































=

→
→
→
→
→
→

























Θ

()

()

()

()

()

()

pos_minus_pos
0

2

3

4

0

1

0 1

3 4

3 0

4 4

0 2

1 0

1

2

0

4

2

0

























⊕

→
→
→
→
→
→

























=

























()

()

()

()

()

()

pos_plus_vel

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

(

0 1

2 3

3 0

4 4

0 2

1 0

0 2

3 4

3 1

4 4

2 4

0 1

0 1

2 4

3 0

4 4

→
→
→
→
→
→

























→
→
→
→
→
→

























=

→
→
→
→

o
))

()

()

0 4

1 1

→
→

























vel_plus_vel

coeff_times_vel

It works but…
The main parameters are
Swarm size s
Neighbourhood size h
Social/cognitive confidence coefficients c1, c2, c3.

A swarm size just equal to the maximum length of the ni lists and a neighbourhood size just equal
to 5 seems to give always the best results. Let us consider what happens when we modifiy
confidence coefficients (Performance Map). Note that, as usually, a NoHope/ReHope is used to
reach exactly a solution and not only an approximation.

As we can see on the Figure 3, which shows the number of cost evaluations to reach a solution, it
is quite difficult to find good coefficients, for we have mainly very bad results. On the other hand
(but the map is not detailed enough to see it), for some rare parameters values, we have quite
good performances (about 100 evaluations).

0 , 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5 5 , 5 6
0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

c 2 = c 3

c 1

Perf. Map. (Fifty-fifty 6, CDPSO)

2000-3000

1000-2000

0-1000

Figure 3. A Performance Map for Crisp Discrete PSO.

For example, for the coefficients (c1=0.3, c2=c3=4), a solution is found after 102 evaluations of
the cost function. As there are 8 solutions among 9000 positions, the probability to obtain this

result just by chance is about 8.7% 1 1
8

9000

102

− −











. We find more or less the same

probability with bigger examples. It seems not that bad, but in fact it is, for at least two reasons:
• the probability value itself is too high (5% would be far better)
• and, more important, we precisely have to "choose" the best parameters, and we have no sure

rules for that.

In practice, it means we have to try different possible sets, so, the true number of evaluations may
be far bigger, typically 1000, which is very bad (probability to find it just by chance=60%). And
we have to do that for the algorithm is not very "robust": even a small change in confidence

coefficients may give a far better or far worse result. That is why it seems a good idea to use a
fuzzy representation, for it is well known fuzzy algorithms are usually very robust.

Fuzzy representation

Position and velocity
Each component of the position is now not only a single number, but a fuzzy set on the possible
values, that is to say, for the i-th component, a set of ni confidence coefficients on [0,1] (note
that these "confidence coefficients" have nothing to do with the social/cognitive confidence
coefficients ck in Equation 1.

For example, the position (1,3,2,6,2,4) would be now, reffering to the ISS
((0,1,2,3,4),(0,1,2,3,4),(0,1,2,3),(1,2,3,4,5,6),(0,1,2),(0,1,2,3,4)),

x =

























0 1 0 0

0 0 0 1 0

0 0 1 0

0 0 0 0 0 1

0 0 1

0 0 0 0 1

The good point is that we can now move more "continuously", for intermediate positions are
defined, as soon as some coefficients are between 0 and 1 (see examples below). Another
interesting point is that a "velocity" has exactly the same representation than a position: a list of
fuzzy sets. The only difference is that the coefficients can have any real value (not only on [0,1]).
It gives us a very natural way to define the operators, in particular coeff_times_vel.

Operators
We need two additional operators:
normalize (ν) := (fuzzy position) → (fuzzy position)
defuzz (◊) := (fuzzy position) → (crisp position)

We apply "normalize" to be sure all coefficients in a fuzzy position are in [0,1], and "defuzz" to
obtain a crisp position on which the cost function can be calculated as before. The examples
below show how the operators work (remember that the coefficients are reffering to the ISS).

normalize

ν

0 2 0 6 0 0

0 1 0 0 1 0

1 0 0 0

0 0 0 2 0 0

0 0 1

1 0 0 0 0

0 1 0 3 0 0

0 1 0 0 1 0

1 0 0 0

0 0 0 1 0 0

0 0 1

1 0 0 0 0

.

.

.

.
















































=

























defuzz

◊

















































=

























0 1 0 3 0 0

0 1 0 0 1 0

1 0 0 0

0 0 0 1 0 0

0 0 1

1 0 0 0 0

1

3

0

4

2

0

.

.

pos_minus_pos
0 1 0 3 0 0

0 1 0 0 1 0

1 0 0 0

0 0 0 1 0 0

0 0 1

1 0 0 0 0

1 0 0 2 0 0

0 2 0 1 0 0

0 0 0 1

0 0 0 1 0 0

1 0 0

0 1 0 0 0

1 1 0 1 0 0

0 1 0 1

.

.

.

.

.

.
















































=

−
− −

Θ

11 0

1 0 0 1

0 0 0 0 0 0

1 0 1

1 1 0 0 0

−

−
−

























pos_plus_vel
1 0 0 2 0 0

0 2 0 1 0 0

0 0 0 1

0 0 0 1 0 0

1 0 0

0 1 0 0 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1

0 0 0 0 0 0

1 0 1

1 1 0 0 0

0 1 0 3 0 0

0

.

.

.

.

.

.
























⊕

−
− −

−

−
−

























=

11 0 0 1 0

1 0 0 0

0 0 0 1 0 0

0 0 1

1 0 0 0 0

























vel_plus_vel
−

− −
−

−
−

























−
− −

−

−
−

























=

−1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1

0 0 0 0 0 0

1 0 1

1 1 0 0 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1

0 0 0 0 0 0

1 0 1

1 1 0 0 0

2 2.

.

.

.

o

00 2 0 0

0 2 0 2 2 0

2 0 0 2

0 0 0 0 0 0

2 0 2

2 2 0 0 0

.

.− −
−

−
−

























coeff_times_vel

0 5

2 2 0 2 0 0

0 2 0 2 2 0

2 0 0 2

0 0 0 0 0 0

2 0 2

2 2 0 0 0

1 1 0 1 0 0

0 1 0 1 1 0

1 0 0 1

0 0 0 0 0 0

1 0 1

1 1 0 0 0

.

.

.

.

.

⊗

−
− −

−

−
−

























=

−
− −

−

−
−

























Cost function
We apply exactly the same cost function, but to the "defuzzified" position ◊()x

Results
As expected, the algorithm is now very robust: the number of cost evaluations is almost the same
on a large range of parameters (see Figure 4).

0 , 5 1 1 , 5 2 2 , 5 3 3 , 5 4 4 , 5 5 5 , 5 6
0 , 1

0 , 2

0 , 3

0 , 4

0 , 5

c 2 = c 3

c 1

Perf. Map. (Fifty-fifty 6, FDPSO)

400-500

300-400

200-300

100-200

0 -100

Figure 4. A performance map for Fuzzy Discrete PSO.

Of course this number (about 400) is still far too high for it means the probability to have found a
solution just by chance is about 30%. But this is for one run. The probability to find a solution
just by chance in less than 400 evaluations for r consecutive runs (with coefficients randomly
chosen) is rapidly decreasing with r. And, more important, the probability to have to perform
more than 500 evaluations to find a solution is simply equal to zero.

Temporary conclusion
So it seems it is really worthwhile to use fuzzy representations, when we have no way to "guess"
efficiently what could be the best parameters: at least, we are sure to not obtain results worse than
a pure random or exhaustive search as sometimes with crisp representations! Now, there are of
course two questions:
• Can this Fuzzy Discrete PSO be improved (theoretical question) ?
• If so, how ? (practical question).

References
Kennedy, J. (1997). Thinking is social: Experiments with the Adaptive Culture Model.

