Think locally, act locally: The Way of Life of Cheap-PSO, an Adaptive Particle Swarm Optimizer

Maurice Clerc

maurice.clerc@writeme.com

Abstract.

In Particle Swarm Optimization, each particle moves in the search space and updates its velocity according to best previous positions already found by its neighbours (and itself), trying to find an even better position. This approach has been proved to be powerful but needs predefined parameters, like swarm size, neighbourhood size, and some coefficients, and tuning these parameters for a given problem may be, in fact, quite difficult. This paper presents a more adaptive method in which the user has almost nothing to do but describe the problem.
1 Introduction

A non adaptive Particle Swarm Optimizer (PSO), as defined in [1, 2], can not work well for any objective function, or more precisely, sometimes you may need to run it several times using different parameter sets before finding a “good” one; and in such a case the method may be in fact, to be fair, globally bad. Some attempts have already been made to define a better PSO ([3-9]), for example by using selection, by modifying a coefficient during the process itself, or by clustering techniques, but each particle is still far from properly using all the information it has.

Here, I present here a more complete variation of PSO, systematically based on the particle point of view. The key question is then "What would I do if I were a particle ?"
 . Note that the purpose of such an adaptive process is to be "good for some problems, never too bad" unlike a non adaptive one, which is carefully tuned for some kinds of problems, and is "excellent for some problems, but very bad for some others". It means, in particular, that the adaptive method has to be designed so that any "No Free Lunch" theorem ([11]) can not be applied (here the objective function is explicitly taken into account during the adaptation process).

To illustrate this approach, I used Cheap-PSO, which is a simplified PSO designed to solve a lot of small problems, taken from classical optimization, equations and systems of equations, and from integer and combinatorial problems (see the Particle Swarm Central, Programs section [10]) . So, let us see more precisely what I mean by "simplified", "adaptive", and "small problems".

1.1 Simplified

The most general system of equations of the PSO algorithm needs six coefficients [12], defining, for a given particle, its position x and its velocity v at time t+1, depending on the ones at time t. Here I use a simpler one with just two coefficients:

[image: image1.wmf]
Equ. 1. Basic equations for Cheap-PSO.

where pg is the best previous position found so far in the neighbourhood (including the particle itself). The convergence criterion defined in [12] is then satisfied if we have
[image: image2.wmf] and
[image: image3.wmf]. Note that the neighbourhood used in this paper, as in most works about PSO, is a "social" one and has nothing to do with Euclidean distances. Particles are "virtually" put on a circle, and the distance between two particles is simply the smallest number of arcs to follow to go from the one to the other.

1.2 Adaptive

At each time step, any particle Pi has the following local detailed information about each particle Pj of its neighbourhood, including itself:

· position xj
best position ever found pj
· velocity vj
· improvement fj (eventually negative) since last check (difference between the previous objective function value and the current one)

and, just for itself, a given number h of last previous objective function values.

It also has some global information:

· the swarm size

· the clock, telling it when it is time to check the neighbourhood. In this version, a check is done every "neighbourhood_size" times.

Using this information, the particle has to "think locally, act locally". It may:

· kill itself,

· generate a new particle,

modify the coefficients  and b before moving.

Below, for each adaptive behaviour, I give the qualitative "reasoning" of the particle Pi, and the mathematical formula used in the current implementation.

1.2.1 Adaptive swarm size

Usually, the swarm size is constant. Some authors use 20, some others 30 [1, 8], but, anyway, nobody has proved a given size is really better than another one. So it seems better to simply let the algorithm modify the swarm size, from time to time.

Note that I still use a constant neighbourhood size (5), except, of course, when the swarm size becomes smaller than this neighbourhood size.

Qualitative reasoning

"There has been not enough improvement in my neighbourhood, although I am the best. It's time to try to generate a new particle."

or

"There has been enough improvement. But not because of me, for I am the worst particle in the neighbourhood. It's time to try to kill myself."

Formulas

The objective function f is supposely defined in a way so that it is always positive or null and we are looking for a minimum (if necessary, we replace it by
[image: image4.wmf], where S is the given target value, accessible or not).

"enough improvement" is more precisely defined by "improvement for at least half of the particles in the neighbourhood" (although there are some hints showing this is not an arbitrary choice, I have no complete proof, so just consider it as a rule of thumb). So, we simply have

"There has been enough improvement"

[image: image5.wmf]
"I am the best"

[image: image6.wmf]
"I am the worst"

[image: image7.wmf]
Below is a pseudo-code of the strategy used in Cheap-PSO.

alpha=0.9; hood_size=5; cycle_size=hood_size;

swarm_size=5;

random initialization of the swarm; // (null velocities)

loop until stop criterion:

<MOVE THE SWARM>

after cycle_size time steps:

 for each particle

if (not_enough_improvement AND the particle is the best in its neighbourhood)

try to add a particle

if (enough_improvement AND the particle is the worst in its neighbourhood)

try to remove this particle

The result of the procedure "try to add a particle" is partly random and depends on the swarm size. The bigger the swarm, the less probable is the addition of a particle. Similarly, the smaller the swarm, the less probable is the deletion of a particle. The stop criterion itself is computed by the algorithm. The user gives an objective value (target S) and an admissible error . The maximum number of evaluations to do, Max_Eval, (depending on the dimensionality D of the problem and on ) is re-evaluated every h time steps (in practice h=cycle_size=neighbourhood_size). In order to do that, each particle memorizes the objective function values for its h last previous positions. Also, of course, the process stops if there is no particle anymore.

It is interesting to see the difference between the two approaches (constant swarm size and adaptive swarm size), by looking at the evolution of a global descriptor: the swarm energy. Let us see what happens on a classical small example (Rosenbrock's function on [-50,50]2). The potential energy of a particle Pi at time t is defined by
[image: image8.wmf]. where f is the objective function, and where “p” is for “potential”. It represents the number of energy steps the particle has to go down to reach a solution point. The potential swarm energy is then
[image: image9.wmf].

We can also define a (relative) kinetic energy by
[image: image10.wmf]for a given particle Pi, and by
[image: image11.wmf], for the whole swarm. In this paper, G is simply an arbitrary constant, chosen so that both Ep and Ek can be easily shown on the same figure. In this example, G=10-14.

As the swarm moves, energies tend to go to zero for the constant swarm size method, but not always for the adaptive one, for, from time to time, a new particle is added. The swarm has then still the possibility to search in a larger domain, and to find a solution more quickly. Figure 1 and Figure 2 show energies versus the number of evaluations, instead of the number of time steps. For a constant swarm size, they are the same, but not so for a variable swarm size; so I use this representation for easier comparisons. Of course, as there is some randomness, the exact numbers of evaluations may be different for another run, but the global "patterns" are the same. It is not globally true that the adaptive algorithm is always better than the constant swarm size algorithm (in terms of number of objective function evaluations). For instance, in this particular case, a constant swarm size equal to 10 is better. Howewer, the point is that you may have to try different swarm sizes to find such a nice one, and unless you are lucky, the sum of all your trials is far worse than any single run of the adaptive method.

[image: image12.wmf]
Figure 1. As kinetic energy can not appreciably re-increase, improvement near the solution is difficult.

[image: image13.wmf]
Figure 2. When the swarm does not find a solution, it globally re-increases its energy by adding new particles, that is to say its ability to explore the search space. And when the process seems to converge nicely, it decreases it again.

1.2.2 Adaptive coefficients

In the above examples, both coefficients  and b were constant. How can they be modified at each time step?

Qualitative reasoning

"The more I'm better than all my neighbours, the more I follow my own way. And vice versa."

"The more the best neighbour is better than me, the more I tend to go towards it. And vice versa."

Formulas

The first reasoning is for coefficient , and the second one for the coefficient b. Experimentally, it appears that what is important is not the exact shapes of the curves, but the mean values and the asymptotes. So we can use, for example, the relative improvement estimation

[image: image14.wmf]
where pg,i is the best position ever found in the neighbourhood of the particle Pi, and

[image: image15.wmf]
with, for instance, the following values
[image: image16.wmf], and
[image: image17.wmf]. These values are not completely arbitrary. There are some informal reasonings suggesting that we should have min≈0.5, bmin>min, max≈bmax, and max "smaller than 1, but not too small". Relative improvement m is defined, after each move, by

Adaptive coefficients, by themselves, improve the algorithm, and, combining this technique with adaptive swarm size, we have an even better result (see Figure 3).

Of course, adaptations are not at all inexpensive (in terms of processor time) but, as we can see on Table 1, they are nevertheless useful. Note, also, that the program (ANSI C source code) is not optimized, and can certainly be improved.

Table 1. Although adaptations need more processor time for each time step, they globally improve the algorithm. The first line can be seen as the "basic" case, when just Equ. 1 is used. In the second one, there are less evaluations, but some computer time is consumed for adaptation, and the total time is a bit longer. In the last case, adaptation still needs some time (even a bit more than before, in fact), but as there are now far less evaluations, the global result is better.

Kind of adaptati-on

Number of evaluati-

ons
Pro-

cessor time (clock ticks)
Ratio

nothing
2240
358
0.16

swarm size
1598
368
0.23

swarm size and coefficiens
1414
255
0.18

1.3 Small problems

The stop criterion uses a dynamic estimation of the maximum number of evaluations needed. Strictly speaking, this estimations is valid only for small dimension (typically less than 35), and, anyway, only for differentiable objective functions. That is why the algorithm should theoretically be used only for small problems (although it sometimes works in practice for big problems too).

The user has to give the following parameters:

· objective function f.

· dimensionality D.

· xmin and xmax, defining a hypercubical search space H.

· target S. If looking for a minimum, the user just has to give a value surely smaller than any objective function value on H.

acceptable error . If S is a "real" target, a solution is any D-point
[image: image18.wmf] so that
[image: image19.wmf].

granularity. If you know in advance there exists an integer k so that all values
[image: image20.wmf] are integer numbers for the solution point, you may try to improve the convergence by giving this information. Howewer, the most interesting use is that you can solve some problems using integer numbers. (k=0).

· “all different” information, saying if all components of the solution must be different or not (useful for some combinatorial problems).

That is all. No parameters to tune carefully. Nevertheless, one must be aware it is like a Swiss knife: a lot of possible uses, but for any use there may exist (and usually there does exist) a better specific tool.

2 Classical examples

The practical point of view is "How many evaluations do I need to find a solution?". For some classical functions Table 2 shows how better the adaptive method is, even in the worst case (Rastrigin function). Another point of view is "What is the best result after x evaluations?". I am referring here to the study [12], which uses a complete PSO version, with constriction coefficients. As we can see on Table 3, Cheap-PSO is never very bad, and often quite good, just as expected.

[image: image21.wmf]
Figure 3. Now, the result is appreciably better, thanks to the conjunction of the two adaptations.

Table 2. Nonadaptive vs adaptive. Shown below are theumber of evaluations needed to find an acceptable solution. For small dimensions, the adaptive method is clearly better than the non adaptive one.

Function
Search space
Max. error
Number of evaluations (mean for 20 runs)
n (m) : n failures after m evaluations

Number of evaluations for the non adaptive case (swarm size=20, =b=0.8)
n (m): n failures after m evaluations

Alpine
[0,10]4
0.001
7001
0
28977
12 (40000)

[0,10]5
0.001
13670
0
37191
15 (50000)

Griewank
[-300,300]4
0.1
8430
2 (24000)
13946
9 (24000)

[-300,300]5
0.1
15234
6 (30000)
22560
14 (30000)

Rastrigin
[-10,10]4
0.01
63363
15 (100000)
88614
15 (100000)

Rosenbrock
[-50,50]4
0.001
10808
0
64143
3 (400000)

[-50,50]5
0.001
50410
0
84850
3 (500000)

Sphere
[0,40]5
0.001
236
0
1038
0

[0,40]10
0.001
790
0
3404
0

Table 3. Nonadaptive vs adaptive. This table shows the results after 40000 evaluations, and comparison with the nonadaptive version used in [12]. They are sometimes better, and never very bad.

Bests results after 20 runs of 40000 evaluations

Function
Search space
Cheap_PSO
PSO Type 1 (swarm size=20)

Ackley
[-32,32]30
4.922528
0.150886

Foxholes
[-50,50]2
0.998004*
0.998005

Griewank
[-300,300]30
0.929815
0.008614

Rastrigin
[-5.12,5.12]30
51.716000
81.689550

Rosenbrock
[-10,10]30
37.218894
39.118488

* This global optimum is in fact found after about 7000 evaluations

3 Less classical examples

Here are some more unusual uses of an optimizer.

3.1 Fifty-fifty

Find D different integers xi in [1,2 … N] so that
[image: image22.wmf]. The objective function is
[image: image23.wmf], and the target is 0. For N=100 and D=20, a solution is found after about 105 evaluations: (63, 90, 16, 54, 71, 20, 23, 60, 38, 15, 12, 48, 13, 51, 36, 42, 86, 26, 57, 79), half-sum=450. Thanks to the randomness, several runs give several different solutions.

3.2 Knapsack

Find D different integer numbers xi in [1 … N] whose sum is equal to a given integer S. The objective function is
[image: image24.wmf], and the target is 0. For N=100, D=10, and S=100, a solution is found after about 870 evaluations: (9, 14, 18, 1, 16, 5, 6, 2, 12, 17). Thanks to the randomness, several runs give several solutions, for example (29, 3, 16, 4, 1, 2, 6, 8, 26, 5). Again, on the one hand it is not very good, for this is a simplified knapsack problem, which can easily be solved by a faster deterministic algorithm; but, on the other hand, you precisely do not have to write such a specific combinatorial algorithm.

3.3 System of equations

Any system
[image: image25.wmf], where fi’s are real functions, can be rewritten equivalently
[image: image26.wmf]

 INCORPORER Equation.3 [image: image27.wmf], so we can use f as an objective function and zero as a target. For example, for the system

[image: image28.wmf]

the solution (1,1,1) is found after about 780 evaluations on the search space [-3,3]3. If we know in advance that the solution is an integer point, we can use granularity=1, and then the solution is found after about 150 evaluations. Note that the algorithm is more interesting for indeterminate (eventually integer) systems, for several runs usually give different solutions. Note also that the system does not need to be linear. For the system

[image: image29.wmf]
 on [0,1]2, a solution (0.73, 0.66) is found after about 320 evaluations. For this example five runs give three different solutions.

3.4 Apple trees

Let ABC be a triangular field, whith T apple trees. Let P be a point inside ABC, n1 the number of apple trees in ABP, n2 in BCP, and n3 in CAP. We are looking for P so that, if possible, n1=n2=n3. A possible objective function is

[image: image30.wmf]
where ni are functions of the position of P (I used here homogeneous coordinates relatively to A, B, and C, so that the dimension of the problem is 3). For T=20, I choose an initial swarm size equal to 1, because the problem is quite simple. Finding a solution like (n1=7, n2=6, n3=7) needs about 40 evaluations.

[image: image31.wmf]
Figure 4. For twenty trees, a solution is found after about 40 evaluations.

4 Improvements

Sometimes, even for problems which seem to be "small" and not that difficult, the program gives no solution. When one analyze the reasons of these failures, one find two main causes:

· the process stops too early,

· the global velocity (which is "summarized" by the kinetic energy) becomes too small too quickly.

So, some possible improvements are:

modify the stop criterion, maybe by taking into account not only the past of each particle separately, but a landscape estimation in a whole neighbourhood,

· modify the "reasoning" and/or the formulas for adaptive swarm size, the coefficients  and b, and, possibly,

· try an adaptive neighbourhood size.

An interesting functional improvement could be an automatically variying and focussed search space, in order to find several solutions in a global search space. For some problems, it would also be interesting to use a non hypercubical search space, or even a non connected one. Also, of course, as already said, the source code can be rewritten and optimized. Anyway the aim is still the same: the user must not do anything other than describing the problem.

References

[1]
R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particles Swarm Theory,” presented at Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.

[2]
J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” presented at IEEE International Conference on Neural Networks, Perth, Australia, 1995.

[3]
P. J. Angeline, “Using Selection to Improve Particle Swarm Optimization,” presented at IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9, 1998.

[4]
A. Carlisle and G. Dozier, “Adapting Particle Swarm Optimization to Dynamics Environments,” presented at International Conference on Artificial Intelligence, Monte Carlo Resort, Las Vegas, Nevada, USA, 1998.

[5]
M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” presented at Congress on Evolutionary Computation, Washington D.C., 1999.

[6]
J. Kennedy, “Stereotyping: Improving Particle Swarm Performance With Cluster Analysis,” presented at (submitted), 2000.

[7]
R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” presented at International Congress on Evolutionary Computation, San Diego, California, 2000.

[8]
Y. H. Shi and R. C. Eberhart, “A Modified Particle Swarm Optimizer,” presented at IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9, 1998.

[9]
S. Naka and Y. Fukuyama, “Practical Distribution State Estimation Using Hybrid Particle Swarm Optimization,” presented at IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA., 2001.

[10]
PSC, http://www.particleswarm.net

[11]
D. H. Wolpert and W. G. Macready, “No Free Lunch for Search,” The Santa Fe Institute 1995.

[12]
M. Clerc and J. Kennedy, “The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space,” IEEE Journal of Evolutionary Computation, vol. in press, No. , 2001.

A

B

C

� If you think you are better than a stupid particle, you should try Jim Kennedy's game at the Particle Swarm Central site � PROGCOMP ENRfu ��[10]�...

_1040542910.unknown

_1059548423.unknown

_1059761861.unknown

_1059762844.unknown

_1059763116.unknown

_1059764478.unknown

_1059762763.unknown

_1059563319.unknown

_1059761774.unknown

_1059548454.unknown

_1059549799.unknown

_1045379343.unknown

_1059504740.unknown

_1045379174.unknown

_1040542935.unknown

_1040476154.unknown

_1040491118.unknown

_1040491560.unknown

_1040534687.unknown

_1040491932.unknown

_1040491267.unknown

_1040476297.unknown

_1040476318.unknown

_1040479762.unknown

_1040476180.unknown

_1040476086.unknown

_1040476117.unknown

_1035285103.unknown

_1040475974.unknown

_1039608744.unknown

_1035126210.unknown

