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Abstract.

In Particle Swarm Optimization,
each particle moves in the search
space and updates its velocity
according to best previous
positions already found by its
neighbours (and itself), trying to
find an even better position. This
approach has been proved to be
powerful but needs predefined
parameters, like swarm size,
neighbourhood size, and some
coefficients, and tuning these
parameters for a given problem
may be, in fact, quite difficult.
This paper presents a more
adaptive method in which the
user has almost nothing to do but
describe the problem.

1 Introduction

A non adaptive Particle Swarm
Optimizer (PSO), as defined in [1,
2], can not work well for any
objective function, or more
precisely, sometimes you may need
to run it several times using different
parameter sets before finding a
“good” one; and in such a case the
method may be in fact, to be fair,
globally bad. Some attempts have
already been made to define a better
PSO ([3-9]), for example by using
selection,  by modifying a
coefficient during the process itself,
or by clustering techniques, but each
particle is still far from properly
using all the information it has.

Here, I present here a more
complete variation of PSO,
systematically based on the particle
point of view. The key question is
then "What would I do if I were a

particle ?"1 . Note that the purpose
of such an adaptive process is to be
"good for some problems, never too
bad" unlike a non adaptive one,
which is carefully tuned for some
kinds of problems, and is "excellent
for some problems, but very bad for
some others". It means, in particular,
that the adaptive method has to be
designed so that any "No Free
Lunch" theorem ([11]) can not be
applied (here the objective function
is explicitly taken into account
during the adaptation process).

To illustrate this approach, I used
Cheap-PSO, which is a simplified
PSO designed to solve a lot of small
problems, taken from classical
optimization, equations and systems
of equations, and from integer and
combinatorial problems (see the
Particle Swarm Central, Programs
section [10]) . So, let us see more
precisely what I mean by
"simplified", "adaptive", and "small
problems".

1.1 Simplified
The most general system of
equations of the PSO algorithm
needs six coefficients [12], defining,
for a given particle, its position x
and its velocity v at time t+1,
depending on the ones at time t.
Here I use a simpler one with just
two coefficients:
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Equ. 1. Basic equations for Cheap-
PSO.

                                                
1 If you think you are better than a
stupid particle, you should try Jim
Kennedy's game at the Particle
Swarm Central site [10]...



where pg is the best previous
position found so far in the
neighbourhood (including the
particle itself). The convergence
criterion defined in [12] is then
satisfied if we have α ∈[ [0 1,  and

b b< = + +sup α α1 2 . Note that the

neighbourhood used in this paper, as
in most works about PSO, is a
"social" one and has nothing to do
with Euclidean distances. Particles
are "virtually" put on a circle, and
the distance between two particles
is simply the smallest number of
arcs to follow to go from the one to
the other.

1.2 Adaptive
At each time step, any particle Pi  
has the following local detailed
information about each particle Pj  of
its neighbourhood, including itself:

• position xj

• best position ever found pj

• velocity vj

• improvement ∆fj (eventually
negative) since last check
(difference between the
previous objective function
value and the current one)

and,  just for itself, a given number
h of last previous objective function
values.

It also has some global
information:

• the swarm size

• the clock, telling it when it is
time to check the
neighbourhood. In this version, a
check is done every
"neighbourhood_size" times.

Using this information, the
particle has to "think locally, act
locally". It may:

• kill itself,

• generate a new particle,

• modify the coefficients α  and b
before moving.

Below, for each adaptive
behaviour, I give the qualitative
"reasoning" of the particle Pi , and
the mathematical formula used in
the current implementation.

1.2.1 Adaptive swarm size
Usually, the swarm size is

constant. Some authors use 20, some
others 30 [1, 8], but, anyway,
nobody has proved a given size is
really better than another one. So it
seems better to simply let the
algorithm modify the swarm size,
from time to time.

Note that I still use a constant
neighbourhood size (5), except, of
course, when the swarm size
becomes smaller than this
neighbourhood size.

Qualitative reasoning
"There has been not enough

improvement in my neighbourhood,
although I am the best. It's time to
try to generate a new particle."

or
"There has been enough

improvement. But not because of
me, for I am the worst particle in the
neighbourhood. It's time to try to kill
myself."

Formulas
The objective function f is

supposely defined in a way so that it
is always positive or null and we are
looking for a minimum (if
necessary, we replace it by

  
f x S( ) − , where S is the given

target value, accessible or not).
"ENOUGH IMPROVEMENT" is more

precisely defined by "improvement
for at least half of the particles in



the neighbourhood" (although there
are some hints showing this is not an
arbitrary choice, I have no complete
proof, so just consider it as a rule of
thumb). So, we simply have

"There has been enough
improvement"
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≥
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"I am the best"
⇔ ∀ ∈ ( ) <P P neighbourhood P f fj j i j i, , ∆ ∆

"I am the worst"
⇔ ∀ ∈ ( ) >P P neighbourhood P f fj j i j i, , ∆ ∆

Below is a pseudo-code of the
strategy used in Cheap-PSO.
alpha=0.9;  hood_size=5;
cycle_size=hood_size;

swarm_size=5;
random initialization  of the swarm; //
(null velocities)

loop until  stop criterion:
<MOVE THE SWARM>
after  cycle_size  time steps:
 for each particle

if (not_enough_improvement
AND the particle is the best in
its  neighbourhood)

try to add  a particle
if (enough_improvement
AND the particle is the
worst  in its
neighbourhood)

try to remove this
particle

The result of the procedure "try to
add a particle" is partly random and
depends on the swarm size. The
bigger the swarm, the less probable
is the addition of a particle.
Similarly, the smaller the swarm,

the less probable is the deletion of a
particle. The stop criterion itself is
computed by the algorithm. The user
gives an objective value (target S)
and an admissible error ε. The
maximum number of evaluations to
do, Max_Eval, (depending on the
dimensionality D of the problem and
on ε) is re-evaluated every h time
steps (in practice
h=cycle_size=neighbourhood_size).
In order to do that, each particle
memorizes the objective function
values for its h last previous
positions. Also, of course, the
process stops if there is no particle
anymore.

It is interesting to see the
difference between the two
approaches (constant swarm size
and adaptive swarm size), by
looking at the evolution of a global
descriptor: the swarm energy. Let us
see what happens on a classical
small example (Rosenbrock's
function on [-50,50]2). The potential
energy of a particle Pi  at time t is

defined by 
    
e t

f x t S
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i
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where f is the objective function,
and where “p” is for “potential”. It
represents the number of energy
steps the particle has to go down to
reach a solution point. The potential
swarm energy is

then
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We can also define a (relative)
kinetic energy by
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for a given

particle Pi , and by
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i
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for the whole swarm. In this paper, G



is simply an arbitrary constant,
chosen so that both Ep and Ek  can be
easily shown on the same figure. In
this example, G=10-14.

As the swarm moves, energies
tend to go to zero for the constant
swarm size method, but not  always
for the adaptive one, for, from time
to time, a new particle is added. The
swarm has then still the possibility
to search in a larger domain, and to
find a solution more quickly. Figure
1 and Figure 2 show energies versus
the number of evaluations, instead
of the number of time steps. For a
constant swarm size, they are the
same, but not so for a variable
swarm size; so I use this

representation for easier
comparisons. Of course, as there is
some randomness, the exact
numbers of evaluations may be
different for another run, but the
global "patterns" are the same. It is
not globally true that the adaptive
algorithm is always better than the
constant swarm size algorithm (in
terms of number of objective
function evaluations). For instance,
in this particular case, a constant
swarm size equal to 10 is better.
Howewer, the point is that you may
have to try different swarm sizes to
find such a nice one, and unless you
are lucky, the sum of all your trials
is far worse than any single run of
the adaptive method.

Rosenbrock 2D. Swarm size=20, constant coefficients.
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Figure 1. As kinetic energy can not appreciably re-increase, improvement near the
solution is difficult.



Rosenbrock 2D. Adaptive swarm size, constant coefficients.
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Figure 2. When the swarm does not find a solution, it globally re-increases its energy
by adding new particles, that is to say its ability to explore the search space. And

when the process seems to converge nicely, it decreases it again.

1.2.2 Adaptive coefficients
In the above examples, both
coefficients α  and b  were constant.
How can they be modified at each
time step?

Qualitative reasoning
"The more I'm better than all my

neighbours, the more I follow my own
way. And vice versa."
"The more the best neighbour is better
than me, the more I tend to go towards
it. And vice versa."

Formulas
The first reasoning is for coefficient α ,
and the second one for the coefficient
b. Experimentally, it appears that what
is important is not the exact shapes of
the curves, but the mean values and
the asymptotes. So we can use, for
example, the relative improvement
estimation

m
f p f p

f p f p
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g i
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where pg,i is the best position ever
found in the neighbourhood of  the
particle Pi , and
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with, for instance, the following values

  
α αmin max, ., .( ) = ( )0509 , and

    
b bmin max, . , .( ) = ( )07 09 . These values

are not completely arbitrary. There are
some informal reasonings suggesting
that we should have αmin≈0.5,
bmin>αmin, αmax≈bmax , and αmax "smaller
than 1, but not too small". Relative
improvement m is defined, after each
move, by

Adaptive coefficients, by themselves,
improve the algorithm, and, combining
this technique with adaptive swarm
size, we have an even better result
(see Figure 3).
Of course, adaptations are not at all
inexpensive (in terms of processor
time) but, as we can see on Table 1,



they are nevertheless useful. Note,
also, that the program (ANSI C source
code) is not optimized, and can
certainly be improved.

Table 1. Although adaptations need
more processor time for each time step,
they globally improve the algorithm.
The first line can be seen as the "basic"
case, when just Equ. 1 is used. In the
second one, there are less evaluations,
but some computer time is consumed
for adaptation, and the total time is a bit
longer. In the last case, adaptation still
needs some time (even a bit more than
before, in fact), but as there are now far
less evaluations, the global result is
better.   

Kind of
adaptati-
on

Number
of
evaluati-
ons

Pro-
cessor
time
(clock
ticks)

Ratio

nothing 2240 358 0.16
swarm
size

1598 368 0.23

swarm
size and
coefficie
ns

1414 255 0.18

1.3  Small problems
The stop criterion uses a dynamic
estimation of the maximum number of
evaluations needed. Strictly speaking,
this estimations is valid only for small
dimension (typically less than 35),
and, anyway, only for differentiable
objective functions. That is why the
algorithm should theoretically be used
only for small problems (although it
sometimes works in practice for big
problems too).

The user has to give the following
parameters:

• objective function f.

• dimensionality D.

• xmin  and xmax , defining a
hypercubical search space H.

• target S. If looking for a minimum,
the user just has to give a value
surely smaller than any objective
function value on H.

• acceptable error ε. If S is a "real"
target, a solution is any D-point
x x xD= ( )1,...,  so that
f x S S( ) ∈ − +[ ]ε ε, .

• granularity. If you know in
advance there exists an integer k
so that all values 10k

ix  are
integer numbers for the solution
point, you may try to improve the
convergence by giving this
information. Howewer, the most
interesting use is that you can
solve some problems using integer
numbers. ( k=0).

• “all different” information, saying
if all components of the solution
must be different or not (useful for
some combinatorial problems).

That is all. No parameters to tune
carefully. Nevertheless, one must be
aware it is like a Swiss knife: a lot of
possible uses, but for any use there
may exist (and usually there does
exist) a better specific tool.

2 Classical examples

The practical point of view is "How
many evaluations do I need to find a
solution?". For some classical
functions Table 2 shows how better the
adaptive method is, even in the worst
case (Rastrigin function). Another
point of view is "What is the best
result after x evaluations?". I am
referring here to the study [12], which
uses a complete PSO version, with
constriction coefficients. As we can
see on Table 3, Cheap-PSO is never
very bad, and often quite good, just as
expected.



Rosenbrock 2D. Adaptive swarm size, adaptive coefficients.
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Figure 3. Now, the result is appreciably better, thanks to the conjunction of the two
adaptations.

Table 2. NONADAPTIVE VS ADAPTIVE. Shown below are theumber of evaluations
needed to find an acceptable solution. For small dimensions, the adaptive method is
clearly better than the non adaptive one.

Function Search space
Max.
error

Number of
evaluations
(mean for 20
runs)

n (m) : n
failures after m
evaluations

Number of
evaluations for the
non adaptive case
(swarm size=20,
α=b=0.8)

n (m):  n
failures after m
evaluations

Alpine [0,10]4 0.001 7001 0 28977 12 (40000)
[0,10]5 0.001 13670 0 37191 15 (50000)

Griewank [-300,300]4 0.1 8430 2 (24000) 13946 9 (24000)
[-300,300]5 0.1 15234 6 (30000) 22560 14 (30000)

Rastrigin [-10,10]4 0.01 63363 15 (100000) 88614 15 (100000)
Rosenbrock [-50,50]4 0.001 10808 0 64143 3 (400000)

[-50,50]5 0.001 50410 0 84850 3 (500000)
Sphere [0,40]5 0.001 236 0 1038 0

[0,40]10 0.001 790 0 3404 0



Table 3. NONADAPTIVE VS ADAPTI VE . This table shows the results after 40000
evaluations, and comparison with the nonadaptive version used in [12]. They are
sometimes better, and never very bad.

Bests results after 20 runs of 40000
evaluations

Function Search space Cheap_PSO PSO Type 1 (swarm
size=20)

Ackley [-32,32]30 4.922528 0.150886

Foxholes [-50,50]2 0.998004* 0.998005

Griewank [-300,300]30 0.929815 0.008614

Rastrigin [-5.12,5.12]30 51.716000 81.689550

Rosenbrock [-10,10]30 37.218894 39.118488

* This global optimum is in fact found after about 7000 evaluations

3 Less classical examples

Here are some more unusual uses of
an optimizer.

3.1 Fifty-fifty
Find D different integers xi  in [1,2 …

N] so that x xi

Int D

i

Int D

D

=
( )

( )+
∑ ∑

1

2

2 1

/

/

. The

objective function is

f x x xi
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i
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2 1

/
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, and the

target is 0. For N=100 and D=20, a
solution is found after about 105
evaluations: (63, 90, 16, 54, 71, 20,
23, 60, 38, 15, 12, 48, 13, 51, 36, 42,
86, 26, 57, 79), half-sum=450. Thanks
to the randomness, several runs give
several different solutions.

3.2 Knapsack
Find D different integer numbers xi in
[1 … N] whose  sum is equal to a
given integer S. The objective function

is f x x Si

D

( ) = −∑
1

, and the target is

0. For N=100, D=10, and S=100, a
solution is found after  about 870
evaluations: (9, 14, 18, 1, 16, 5, 6, 2,
12, 17). Thanks to the randomness,
several runs give several solutions, for
example (29, 3, 16, 4, 1, 2, 6, 8, 26,
5). Again, on the one hand it is not
very good, for this is a simplified
knapsack problem, which can easily
be solved by a faster deterministic
algorithm; but, on the other hand, you
precisely do not have to write such a
specific combinatorial algorithm.

3.3 System of equations

Any system 

f x x

f x x
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, where

fi’s are real functions, can be rewritten
equivalently

f x x f x xD i D
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we can use f as an objective function



and zero as a target. For example, for
the system
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the solution (1,1,1) is found after
about 780 evaluations on the search
space [-3,3]3. If we know in advance
that the solution is an integer point,
we can use granularity=1, and then the
solution is found after about 150
evaluations. Note that the algorithm is
more interesting for indeterminate
(eventually integer) systems, for
several runs usually give different
solutions. Note also that the system
does not need to be linear. For the
system

x x

x x

1
2

2
2

1 2

1 0

10 0

+ − =

( ) − =





sin

 on [0,1]2, a solution (0.73, 0.66) is
found after about 320 evaluations. For
this example five runs give three
different solutions.

3.4 Apple trees
Let ABC be a triangular field, whith T
apple trees. Let P be a point inside
ABC, n1 the number of apple trees in
ABP, n2 in BCP, and n3 in CAP. We
are looking for P so that, if possible,
n1=n2=n3. A possible objective function
is

 f P n n n n( ) = −( ) + −( )1 2
2

2 3
2

where ni  are functions of the position
of P (I used here homogeneous
coordinates relatively to A, B, and C,
so that the dimension of the problem is
3). For T=20, I choose an initial
swarm size equal to 1, because the
problem is quite simple. Finding a
solution like (n1=7, n2=6, n3=7) needs
about 40 evaluations.

Figure 4. For twenty trees, a solution is
found after about 40 evaluations.

4 Improvements

Sometimes, even for problems which
seem to be "small" and not that
difficult, the program gives no
solution. When one analyze the
reasons of these failures, one find two
main causes:

• the process stops too early,

• the global velocity (which is
"summarized" by the kinetic
energy) becomes too small too
quickly.

So, some possible improvements
are:

• modify the stop criterion, maybe
by taking into account not only
the past of each particle
separately, but a landscape
estimation in a whole
neighbourhood,

• modify the "reasoning" and/or the
formulas for adaptive swarm size,
the coefficients α  and b, and,
possibly,

• try an adaptive neighbourhood
size.

An interesting functional
improvement could be an

A

B
C



automatically variying and focussed
search space, in order to find several
solutions in a global search space. For
some problems, it would also be
interesting to use a non hypercubical
search space, or even a non connected
one.  Also, of course, as already said,
the source code can be rewritten and
optimized. Anyway the aim is still the
same: the user must not do anything
other than describing the problem.
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