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Algebraic view
The basic simplified dynamic system is defined by

vt +1 = vt + ϕyt

yt +1 = − vt + (1− ϕ)yt

 
 
 

Equ. 1

where yt = p − xt .

Let Pt =
vt

yt

 
  

 
   be the current point in R2 , and M =

1 ϕ
−1 1− ϕ

 
  

 
   the matrix of the system. So we have

Pt +1 = MPt  and, more generally, Pt = M t P0

So the system is completely defined by M.

The eigenvalues of M are:

e1 = 1 − ϕ
2

+
ϕ 2 − 4ϕ

2

e2 = 1−
ϕ
2

−
ϕ2 − 4ϕ

2

 

 
  

 
 
 

Equ. 2

We see immediately that the value ϕ=4 is special. We will see below what it means.

For ϕ ≠4 we can define a matrix A so that AMA−1 =
e1 0

0 e2

 
  

 
  

(if ϕ =4, A-1 doesn’t exist).

For example, from the canonical form A =
a 1

c 1

 
  

 
   we find

a =
ϕ + ϕ2 − 4ϕ

2ϕ

c =
ϕ − ϕ2 − 4ϕ

2ϕ

 

 
 
 

 
 
 

In order to have simpler formulas, we can multiply by 2ϕ, to produce a matrix A:

A =
ϕ + ϕ2 − 4ϕ ϕ
ϕ − ϕ2 − 4ϕ ϕ

 

 
 
 

 

 
 
 

So if we define Qt = APt   we can now write

Pt +1 = A−1LAPt

APt +1 = LAPt

Qt +1 = LQt

that is to say we have, finally, Qt = Lt Q0



But L is a diagonal matrix, so we have simply  Lt =
e1

t 0

0 e2
t

 

 
 

 

 
 

In particular, we have a cyclic behavior if and only if Qt = Q0  (or, more generally if Qt +k = Qt ).  This just
means that we have the system of two equations:

e1
t = 1

e2
t = 1

 
 
 

Case ϕ<4

For ϕ<4, the eigenvalues are complex, and there is always at least one (real) solution for ϕ.
More precisely we can write

e1 = cos(θ ) + i sin(θ)

e2 = cos(θ) − i sin(θ)

 
 
 

with cos(θ ) = 1−
ϕ
2

 and sin(θ ) =
4ϕ − ϕ2

2
and then

e1
t = cos(tθ) + i sin(tθ)

e2
t = cos(tθ ) − i sin(tθ)

 
 
 

and cycles are given by any θ so that θ =
2kπ

t

So for each t, the solutions for ϕ are given by

  
ϕ = 2 1 − cos

2kπ
t

 
 
  

 
 , k ∈ 1,2,K,t )1{ }

Table 1 gives some nontrivial values of ϕ for which the system is cyclic.

For any other value, the system is just quasi-cyclic (see Figure 4).
We can be a little bit more precise. Below,   is the 2-norm (the Euclidean one for a vector).
We have here

Qt = APt = Q0

A−1 Q0 ≥ Pt ≥
Q0

A

 

 
 

 
 

For example, for v0=0 and y0=1, we have

Table 1.  Some ϕ  values for which the system is cyclic.

ϕ size of the cycle
3 3 (see Figure 1)
2 4

5 ± 5

2

5 (see Figure 2 and Figure 3)

1, 3 6,3
1, 2, 3, 2 ± 3 6, 4, 3, 12



max
1

2

3ϕ − 4 ± 5ϕ2 − 8ϕ + 16

ϕ2 − 4ϕ

 

 
 
 

 

 
 
 ≤ Pt ≤

2

max 3ϕ − 4 ± 5ϕ2 − 8ϕ + 16 
 
  

 
 

Figure 1. 3-cycle.
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Figure 2. Non convex 5-cycle.
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Figure 3. Convex 5-cycle.
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Figure 4. Quasi-cycle.
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Case ϕ>4

If ϕ>4, then e1 and e2 are real numbers (and e1

? ?
≤ e2

? ?
), so we have either

• e1 = e2 = 1  (for t even)  which implies ϕ=0, not consistent with the hypothesis ϕ>4
• e1 = − e2 = 1 (or -1) which is impossible
• e1 = e2 = − 1 that is to say ϕ=4, not consistent with the hypothesis ϕ>4

So, and this is the point, there is no cyclic behavior for ϕ>4. And, in fact, the distance from the point Pt  to
the center (0,0) is strictly increasing with t.



We have
Qt = APt

LtQ0 = APt

LtQ0 = APt

So
Lt Q0 ≤ A Pt

Lt Q0

A
≤ Pt

But we can also write

Pt = A−1Qt

Pt ≤ A−1 Qt

Pt ≤ A−1 Lt Q0

So, finally, Pt is increasing “like” Lt Q0 .

This result can be used to prevent the “explosion” of the system by defining "constriction" coefficients.

Case ϕ=4

 We have here M =
1 4

−1 −3

 
  

 
  

In this particular case, the eigenvalues are both equal to -1, and there is just one family of eigenvectors,

generated by V =
−2

1

 
  

 
  . So we have MV = −V .

So, if P0 is an eigenvector, proportional to V (that is to say if v0 + 2y0 = 0 ), we just have two
“symmetrical” points, for

Pt +1 = ±
2y0

− y0

 
  

 
  = −Pt

In the case where P0 is not an eigenvector, we compute directly how Pt  is decreasing and/or increasing.

Let us define ∆ t = Pt +1
2 − Pt

2
.

It is easy to see (by recurrence) we have has the following form:
∆ t = at v0

2 + bt v0y0 + ct y0
2

where at,bt,ct are integer numbers so that ∆ t = 0  for v0 + 2y0 = 0 .

Now, let’s suppose for a particular t we have ∆ t > 0 . What about  ∆ t +1  ?

We easily compute ∆ t = vt
2 + 14vt yt + 24yt

2 .

This quantity is positive if and only if vt is not between (or equal to) the roots −2yt , −12yt{ }
Now, if we compute ∆ t +1  we have∆ t +1 = 11vt

2 + 54vt yt + 64yt
2 , and the roots are −2yt , −

32yt

11
  
 

  
 

. As

32

11
< 12 , it means that ∆ t +1  is also positive.



So as soon as Pt  begins to increase, it does so infinitely.

But it can be decreasing, at the beginning. How many times ?

Suppose we have ∆0 < 0.

It means v0 is between -2y0 and -12y0. For instance in the case y0>0, we can write

v0 = − 2y0 − ε , with ε ∈ 0,10 y0] [
By recurrence, we have then
∆0 = −10y0ε + ε 2

∆1 = −10y0ε +11ε2

∆2 = −10y0ε + 21ε2

∆ t + 2 = − ∆ t + 2∆t +1 = − 10y0ε + kt + 2ε2 , with kt +2 = − kt + 2kt +1

 Finally, we can write
∆ t = − 10y0ε + (1 + 10t)ε 2

as long as
(1+ 10t)ε2 ≤ 10y0ε
that is to say (for t is an integer) as long as

t ≤ 1+ Integer_ part
y0

ε
 
 
  

 
 

After that, Pt increases.

We can do exactly the same analysis for y0<0. In this case ε<0 too, so the formula is the same.

In fact, we can even be more precise. If we define

 
α = −10y0ε + ε 2

β = 10ε2

 
 
 

  

then we have

Pt = t
β
2

+
α − β

2
t

+
P0

2

t 2

That is to say Pt  is decreasing/increasing almost linearly when t is big enough. In particular, even if it

begins to decreases, after that it tends to increase almost like t 5 v0 + 2y0 .


