
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract—In Particle Swarm Optimization, each particle
moves in the search space and updates its velocity according to
best previous positions already found by its neighbors (and
itself), trying to find an even better position. This approach has
been proved to be powerful but needs parameters predefined by
the user, like swarm size, neighborhood size, and some
coefficients, and tuning these parameters for a given problem
may be, in fact, quite difficult. This paper presents a framework
for designing adaptive particle swarm optimizers without any
“supervisor”, in order to obtain autonomous methods in which
the user has almost nothing to do but describe the problem. To
illustrate the adaptation process, a possible implementation for a
simple PSO version is given, so that we can examine how
different, and globally better, is the behavior of the swarm on
some classical test functions.

Index Terms—adaptation, optimization, particle swarm.

I. INTRODUCTION

hen using a non-adaptive Particle Swarm Optimizer
(PSO), as defined in [1]–[2], you may need to run it

several times using different parameter sets before finding a
“good” one. To avoid this drawback, some attempts have
already been made to define an adaptive PSO [3]–[9], for
example by using selection, by modifying a coefficient during
the process itself, or by clustering techniques.

W

Here, we present a more complete framework
systematically based on the particle point of view, which has
mainly local information. The key question is then “What
would I do if I were a particle”? To illustrate this approach by
giving a possible implementation, we also build an adaptive
PSO version from a very simple non-adaptive one, so that we
can examine the global behavior of the swarm and report
results on some classical test functions.

II.PRINCIPLES AND QUALITATIVE REASONINGS

et H={x} be the search space, that is to say the set of the
possible positions, and let D be its number of dimensions.

Let be the objective function on H, S the target and the
maximum admissible error (or minimum wanted accuracy).
Let be the error function. We do not examine
here the important problem of the stopping criterion for the
iterations, and we assume we have at least one. When S is
known, this stopping criterion is simply f(x)<

L

A key concept in particle swarm optimization is the
“neighborhood” of a particle. No matter how it is defined
(using distances or not, in particular), it can always be seen as

Manuscript received June 30, 2002.
M. Clerc is with the France Télécom Recherche & Développement, 90000,

Belfort, France (e-mail: Maurice.Clerc@ WriteMe.com).

a list of particles, including the particle whose neighborhood is
being defined. The most widely used neighborhood is the
“circular” one. For example, if the particles are numbered (0,
1, 2, 3), the neighborhood of size 3 for the particle 3 is {3-1, 3,
3+1} modulo(4) i.e. {2, 3, 0}.

Any PSO algorithm defines, for a given particle , its

position x i(t)=(xi ,1(t), . . . , x i , d (t) , . . . , x i ,D(t)) and

its velocity v i (t)=(v i ,1(t) , . . . , v i , d (t) , . . . , v i , D(t)) at

time t+1, depending on the ones at time t. To present the
adaptation principles, here we choose a simple version of
PSO, which is known as PSO Type 1’’ [10]. This has just one
coefficient, but the principles can easily be extended to more
complicated systems. It is defined in detail in [10], and we
give here just the main formula:

v i , d(t+1)= χ (v i , d (t)+rand (0 . . .ϕ
2

)(pi , d (t)−x i , d(t)))

, (1)

+rand (0. . . ϕ
2
)(gi , d (t)−x i ,d (t))

x i , d (t+1)=x i , d (t)+v i ,d (t+1)
with

χ= 2

ϕ−2+√ϕ2−4ϕ

where pi=(pi ,1 , . . . , pi , d , . . . , pi , D) is the best position

found so far by the particle Pi , and

gi=(gi ,1 , . . . , gi , d , . . . , gi ,D) the best position found so

far by the neighbors (remember that one of them is the particle

itself), and where rand (0. . .u) stands for “a random

number (uniform distribution) in [0 ,u] .” Note that this
coefficient is a priori different for each component, so we can
not write just a vector equation like

v i (t+1)= χ (v i(t)+rand (0. . . ϕ
2
)(pi(t)−xi (t)))

+rand (0. . . ϕ
2
)(gi (t)−x i(t)) (2)

for such a formula will imply exactly the reverse. For

example, it will mean that the coefficient rand (0. . . ϕ/2) is
computed just once and has the same value for all components

of (pi(t)−xi (t)) . However is constant and the same for

1

Think Locally, Act Locally – A Framework for
Adaptive Particle Swarm Optimizers

Maurice Clerc

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

all particles.
To transform this model into an adaptive one, we have to

modify three parameters during the process: the swarm size
(by adding and removing some particles), the neighborhood
size of each particle, and a different coefficient ϕ for each

particle, called now ϕi . Here, we try to do that without any

“supervisor ”, just by local actions, assuming that “local”
means “in the neighborhood of a particle”. So each particle
needs some knowledge, and some abilities.

A. What a particle knows

At each time step t, each particle Pi can obtain the

following information from particles P j of its neighborhood:

- the position x j(t) (written just x j , to simplify),
- the best position ever found p j ,
- the first error function evaluation (we will need it for

improvement evaluation), i.e. f (x j (t 0 , j)) , where
t0 , j is the time step at which P j has been generated,

- the velocity v j ,
and also, from itself:
- the coefficient ϕi used instead of ϕ in (1),
- the neighbour list hi ,
- the last time instant it has performed any adaptation task,
- the previous position value f(xi(t-1)).

Although the process is designed to be as local as possible,
the particle also needs a few global information:
- an adaptive threshold Δ for “enough improvement”, as

defined below,
- the time t, for, as we will see, adaptation has to be made

just from time to time,
- the swarm size N (t) (called simply N throughout the

rest of the paper).

B. What a particle can do

Using this information, the particle has to “think locally, act
locally.” We assume it can perform, as in non-adaptive PSO,
all computations required by the system (1), and can also
compute f(x) for any given position x. Now, for the adaptation
process, four actions are possible:
- kill itself,
- generate a new particle,
- modify its coefficient ϕi ,
- modify its neighbour list.

Killing itself and generating a new particle are both
modifying the swarm size. In “classical” PSO, it is constant.
Some authors use 20, some others 30, and some studies have
been done showing the influence of the swarm size [1], [11]–
[12], but we have no rule saying a given size is better than
another for a given kind of problem. So it seems simpler to let
the algorithm modify this size, from time to time, by removing

some particles and adding new ones.
We now give the six rules defining our framework, as

qualitative “reasoning” for the adaptive actions. Remember
that in these rules, “local” from a particle point of view means
“in my neighborhood, amongst my neighbors (including
myself).” In the next section, we will give some mathematical
formulations for a possible implementation.

1) Suicide
The reasoning proposed is:
Rule 1
“There has been enough local improvement. However, I

can’t claim any credit for I am the worst local particle. It's
time to kill myself.”

Improvement for a particle is evaluated by comparing its
position when it has been generated and the best position it has
found after that.

2) Generation
Now, the reasoning is:
Rule 1’
“There has been not enough local improvement, although I

am the local best. It's time to generate a new particle.”
3) Modifying coefficient

The idea is that if everything goes well, the particle can try to
speed up its convergence, taking the risk of decreasing the part
of the search space it explores. On the contrary, if its
improvement is not that good, it would be better to slow down
the rate of convergence, and take time to explore a wider part
of the search space.
So, a general pair of rules could be
Rule 2
“The more I improve myself, the smaller can be the part of the
search space I explore.”

Rule 2’
“The less I improve myself, the bigger should be the part of
the search space I explore.”
In PSO Type 1’’, this can be done just by
increasing/decreasing the ϕ value. This technical point is not
really obvious, but it has been shown in [10] by computing the
radius of a circular attractor in the phase space of the particle.
However, you can note in (1) that both χ and χϕ are indeed

decreasing when ϕ increases above 4, and so does velocity.
4) Change its neighborhood

Although different topologies are possible for the
neighborhood, no clear and constant effects has been found
[13]. So, for the moment, we use the simple circular one we
have seen above. However, the size of this neighborhood is
constantly modified for each particle during the process.

The reasoning is:
Rule 3
“I am the local best, and I have improved myself enough, so

I don’t need to ask so many neighbors for more information. I
can reduce my neighborhood.”

2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Rule 3’
“I am the local best, but I have not improved myself

enough, so I need more information. I have to ask more
neighbors.”

Note that the above implies a particle that is not the local
best does not change its neighborhood size at all. Also, as soon
as different particles start having different neighborhood sizes,
the relation “to be the neighbor of” ceases to be a symmetric
one. In fact, in such a case, it would be better to not use the
term “neighborhood” but something like “knowable group” or
“informers.”

C. Acting, but when?

Checking for adaptations at each time step is not a good
idea. Not only because it has a cost, but also because, for
example, when you add a new particle, this particle needs
some time “to prove itself.” Unfortunately, there does not exist
a method that is mathematically proven to be optimal. The
following rule of thumb seems to work well in practice.

 When you use a “circular” neighborhood, an estimation of
the number of time steps before the next check is

Δt=E (N /2) (3)

where N is the current swarm size, and E(u) the integer part of
u. Intuitively, it is quite logical that it should be an increasing
function of N, for if there are a lot of particles, they do not
need to spend time to be “intelligent,” so they can perform
adaptations less often.
Also, it has been found that it is better, in a given
neighborhood, to not perform all adaptations for all particles at
the same time. In particular, at each time step, just one suicide
or one generation per neighborhood is enough. One could say
that the “thinking unit” is not the particle but the
neighborhood.

III. AN IMPLEMENTATION

o illustrate the qualitative principles we have seen and to
be able to give some numerical results, we give here a

possible implementation. There is no doubt that better ones
can be found.

T
A. Precise definitions

1) Comparing particles
First, we have to define how to compare the particle Pi and

the particle P j , i.e. to define a relation order (read “better

than”) on the set of particles. We do not take into account the
current positions, but only the best previous ones:

f (pi)≤f (p j)⇔Pi≻P j (4)

Note that it means we have Pi≻Pi . More generally, the

order relation makes sense even for particles with exactly the

same best error function value (it may occur, particularly in a
discrete search space).

2) Improvement
The improvement for a given particle Pi is defined by

δ (Pi)=
f (x i(t0 , i))−f (pi)

f (x i(t0 ,i))+ f (pi)
. (5)

It is a relative improvement, always defined, for if the
denominator were equal to zero, it would mean a solution has
already been found, and the algorithm already stopped.

3) Improvement threshold
The threshold “enough improvement” is first computed as

follows. After the (random) swarm initialization, the worst f
value and the best f value for the whole swarm are found.
Then the initial threshold is defined by

D=1−
f best
f worst

. (6)

After that, during the process, it is updated by

Δ :=Δ(2−
1

eN) (7)

each time a particle is removed, and by

Δ := Δ

(2−
1

eN)
(8)

each time a particle is generated. The underlying idea is that
when there has been enough improvement, this threshold can
be increased, and vice versa. Also, the smaller the swarm, the
easier it is to increase the improvement threshold, that is to say
the less probable it is that some particles will be removed
during the next step, and vice versa. Note that, for simplicity,
we use here just one global threshold, although we can have
one for each neighborhood.

4) Best neighbor, worst neighbor
The best particle Pbest ,i in the neighborhood of the particle

Pi is “better than” (order relation ≻) any other in this

neighborhood. More precisely, we have

Pbest ,i∈ {Pk , Pk ∈hi ,∀ Pl∈hi , Pk≻Pl } . (9)

There may be several particles like that, and in case of a tie,
it is chosen at random among them. For the worst particle

Pworst , i , we have a similar definition

Pworst , i∈ {Pk , Pk ∈hi ,∀ Pl∈hi , Pl≻Pk } . (10)

3

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

B. Mathematical formulations for reasoning

1) Swarm size (Rule 1 and Rule 1’)
The qualitative reasoning for suicide can now be formulated

as follows

Pi=Pworst ,i δ(Pbest , i)≥Δ⇒ remove Pi (11)

Similarly, the formula for generation is

Pi=Pbest , iδ (Pbest ,i)<Δ⇒ add a particle (12)

Note 1 – There are a lot of ways to add a new particle,
randomly or semi randomly (guided generation). As it is not
the purpose of this paper to study them, in the examples below
we use only pure random generation inside the search space H.

Note 2 – When a particle is removed or added, some
neighbor lists have to be redefined.

Note 3 – There is no rule for the initial swarm size. You can
perfectly begin with just one particle, but, experimentally,
three seems to be a better choice.

Note 4 – Theoretically, you do not need to define a
minimum swarm size. Nevertheless, in some cases, the swarm
disappears completely before finding a solution, so, in
practice, a minimum value is indeed given (three, in the
examples below). If the swarm size is equal to this value, no
suicide is permitted. Also we do not need to define a
maximum swarm size but in practice we might have to,
considering the limitations of our computer. When this
maximum is reached no generation is permitted.

2) Coefficients (Rule 2 and Rule 2’)
We have to define how to modify ϕi in a given interval

[ϕmin , ϕmax] , knowing its current value, the improvement of

the particle δ (Pi) and the threshold Δ . As initial value for

each particle, we simply choose (ϕmin+ϕmax) /2 , and then,

as δ (Pi)−Δ is theoretically in]−∞ ,1] , we use the

following formulas, which are consistent with Rule 2 and Rule
2’ and ensure that ϕi is always between ϕmin and ϕmax :

mi=δ (Pi)−Δ .

mi≥0⇒δϕ=(ϕmax−ϕi)mi

mi<0⇒ λ=(ϕmax−ϕi)/(ϕi−ϕmin)

δϕ=(ϕi−ϕmin)((1−mi)
−λ

−1) (13)

3) Neighborhood sizes (Rule 3 and Rule 3’)

Let δ|hi| be an incremental modification of the particle

Pi’s neighborhood size. A possible set of formulas for Rule 3
and Rule 3’ is

Pi=Pbest , i

δ (Pi)≥Δ⇒ δ|hi|:=δ|hi|−
δ|hi|−1

N−1

δ (Pi)<Δ⇒ δ|hi|:=δ|hi|+
N−δ|hi|

N−1
(14)

These formulas are the simplest ones (linear) that assure the
neighborhood size is at least equal to 1 (the particle itself) and
at most equal to N (the whole swarm). Note that the size being
an integer, such modifications have a real effect only when
their “accumulation” is greater than (or equal to) 1 (in absolute
value). Then we have

δ|h j|≥1⇒h j :=h j+1 , δ|h j|:=0 and

δ|h j|≤−1⇒h j :=h j−1 , δ|h j|:=0 . (15)

IV. ILLUSTRATION

e now have all we need to really run an adaptive PSO,
which we will call APSO 1’’. Below we give some

examples. The first one is quite detailed, in order to examine
the behavior of the swarm; the others to show the global
performances. For comparison we use PSO Type 1’’, with ϕ
value equal to 4.1, a swarm size equal to 20, and a
neighborhood size equal to three for all particles. Note that
these parameters have been manually chosen after thousands
of trials, in order to obtain good results on most of classical
test functions.

W

For APSO 1’’, we define a minimum swarm size equal to
three, a minimum neighborhood size equal to three, no
maximum for the swarm size, and, for all ϕi , the interval

. Note that, from a theoretical point of view, this last
choice is quite arbitrary and, thus, quite frustrating, for it is
just a rule of thumb. In all the examples where we run
PSO Type 1’’, we can see (no rigorous proof yet) that there is
indeed an optimal value near to 4.1.

A. A detailed example

Let us study first in detail a well-known small example: the
Rosenbrock’s /Banana function on [-10,10]2.

To see the difference between the two approaches, we can
look at the evolution of some global descriptors: the swarm
energies.

The (relative) kinetic energy of the particle Pi is defined

by

ek , i (t)=
1
2 ∑

d=1

D

(
vi , d (t)

xmax (d)−xmin (d))
2

, (16)

where xmax (d) (resp. xmin (d)) is the maximum (resp.

4

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

minimum) for the dth component of any position inside the
search space.

The kinetic energy of the whole swarm is then

Ek (t)=∑
i=1

N

ek ,i (t) . (17)

The potential energy of the particle is defined by

e p ,i (t)=
f (xi (t))

ε
. (18)

It represents the number of energy steps the particle has to
go down to reach a solution point. The potential energy of the
whole swarm is then

Ep (t)=G∑
i=1

N

e p, i (t) . (19)

Here, G is simply an arbitrary constant, chosen so that the
evolution of Ep, Ek, and the swarm size can be easily shown on
the same figure. In this example, G=5.10-14.

As the swarm moves, energies tend to go to zero for both
methods, but not so regularly for the adaptive one, for, from
time to time, a new particle is added. The swarm has then still
the possibility to search in a larger domain, and to find a
solution more quickly. For two typical runs, Fig. 1 and Fig. 2
show energies versus the number of evaluations, instead of the
number of time steps. For a constant swarm size, they are the
same, but not for a variable swarm size, so we use this
representation for easier comparisons. Of course, as there is
some randomness, the exact number of evaluations may be
different for another run, but the global “patterns” are the
same. It is not globally true that an adaptive algorithm is
always better than a non-adaptive one. For instance, in this
particular case, with the non-adaptive PSO Type 1’’, a
constant swarm size equal to 11, a constant neighborhood size
equal to 4, the result is equivalent. However, the point is that
you may have to try a lot of different sets of parameters to find
such a nice one, and unless you are lucky, the sum of all your
trials is far worse than any single run of the adaptive method.

In Fig. 3, we can see how the neighborhood size is modified
for some particles during a run. According to Rule 3, for a
“good” particle the neighborhood size is decreasing. So, we
can guess that particle 5 (or 17, generated later) will find a
solution (it is particle 17, in fact). Note that when a new
particle is generated it is numbered (labeled) by adding 1 to
the largest label ever used. So, if some particles have been
removed, a particle can perfectly have a label greater than the
current swarm size.

In Fig. 4, we see how particle 17 globally increases its ϕ
parameter during the process, even if from time to time it has
to decrease it. It means it reduces its search domain and,
finally, it will indeed find a solution point.

Let us now see some results with more difficult test
functions. For fair comparisons, we define a “unit adaptation
cost” u, proportional to the processor time related to one error
function evaluation, during the iterative process. If we take
u=1 for PSO Type 1’’ and for a given test function, we

always have u>1 for APSO 1’’ (adaptation does have a
cost). This rate may be decreased with better coding, but,
anyway, we have to take it into account.

B. Some global results

For each example the following method has been used.
First, PSO Type 1’’ is launched 100 times, with 40000
function evaluations (that is to say 2000 iterations, for the
swarm size is 20). Results are noted, and the mean computer
time T for a run is evaluated. Second, APSO 1’’ is launched
100 times, and for every launch it was permitted to run for the
time T. Of course, because of the adaptation process, it means
less function evaluations can be done, but thanks to the
adaptation process results should be at least equivalent if not
better.

 For some classical functions Table I shows that it is indeed
the case. Also, as we can see, the mean neighborhood size is
never very different from three but the mean swarm size is
really interesting. We could think that by using this mean
value (more precisely the nearest integer value) as a constant
swarm size with PSO Type 1’’, we should find a better result.
In fact, it is not necessarily the case. For example, for the
Rosenbrock function, when we use a constant swarm size of
22, we find a mean value of 58.66 (instead of 48 with a swarm
size of 20). As the result with APSO 1’’ is far better (21.84), it
means the fluctuations of the swarm size has indeed been
cleverer than the use of a constant size. Finally, when we
compare the number of function evaluations in PSO Type 1’’
(that is, 40000) to the mean number of evaluations, we have an
estimate of the “unit adaptation cost.” As we can see, even
though this rate is a bit high for the Ackley example (1.82),
the result justifies this extra cost (mean result of 0.03x10-8

instead of 1.75x10-8 for the same processor time).
An interesting question is to know whether the three kind

of adaptations (swarm size, neighborhood sizes, coefficients
ϕi) are all useful. A lot of tests have been done, keeping one

or two of them as constant, with different values and it appears
that the conjunction of the three adaptations is indeed most of
the time better than any other combination. An example is
shown in Table II when one parameter is kept constant. There
are only two cases where it would have better to keep either
the parameters or the neighborhood sizes constant.
Remember, though, that the constant values used here have
been specifically tuned to give good results with these kind of
functions.

V. CONCLUSION AND FUTURE WORK

 n the above, we showed that an adaptive method for
PSO might be a very relevant and strong idea. In the

non-adaptive method some parameters may need to be
estimated after a lot of trial runs, which can be difficult. On

I

5

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the other hand, the adaptive method does not constrain the
user in any way; the user only has to describe the problem;
and the results are equivalent or often better in the adaptive
method.
 However, the implementation example is not completely
satisfying, for at least three reasons: starting point is just a
particular non-adaptive PSO, the adaptation formulas may be
too simple, and, importantly, there is still a parameter (ϕ)
whose values need to be arbitrarily confined within a small
interval, without any mathematical justification. The first two
problems are mainly technical ones, and thanks to the general
framework defined here, that we also proved to be efficient, it
would not be that difficult to study them. In particular it would
be interesting to see if an adaptive deterministic model could
be at least as good as the classical non-adaptive ones, which
use randomness. The third problem is more difficult and
clearly needs a theoretical breakthrough.

Also, studying the adaptive process, it appears that the best
description level to understand the behavior of the swarm is
probably not the particle but what we have called the
“knowable group.” It would certainly be interesting to
examine how knowable groups exchange information as soon
as they have some particles in common, and how they decide
to increase or decrease, speed up or slow down.

REFERENCES

[1] R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle
Swarm Theory,” presented at Sixth International Symposium on
Micro Machine and Human Science, Nagoya, Japan, 1995.

[2] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,”
presented at IEEE International Conference on Neural Networks,
Perth, Australia, 1995.

[3] P. J. Angeline, “Using Selection to Improve Particle Swarm
Optimization,” presented at IEEE International Conference on
Evolutionary Computation, Anchorage, Alaska, May 4-9, 1998.

[4] A. Carlisle and G. Dozier, “Adapting Particle Swarm Optimization
to Dynamics Environments,” presented at International Conference
on Artificial Intelligence, Monte Carlo Resort, Las Vegas, Nevada,
USA, 1998.

[5] M. Clerc, “The Swarm and the Queen: Towards a Deterministic
and Adaptive Particle Swarm Optimization,” presented at Congress
on Evolutionary Computation, Washington DC, 1999.

[6] J. Kennedy, “Stereotyping: Improving Particle Swarm
Performance With Cluster Analysis,” presented at Congress on
Evolutionary Computation, 2000.

[7] R. C. Eberhart and Y. Shi, “Comparing inertia weights and
constriction factors in particle swarm optimization,” presented at
International Congress on Evolutionary Computation, San Diego,
California, 2000.

[8] R. C. Eberhart and Y. Shi, “Evolving artificial neural networks,”
presented at International Conference on Neural Networks and
Brain, Beijing, 1998.

[9] S. Naka and Y. Fukuyama, “Practical Distribution State Estimation
Using Hybrid Particle Swarm Optimization,” presented at IEEE
Power Engineering Society Winter Meeting, Columbus, Ohio,
USA, 2001.

[10] M. Clerc and J. Kennedy, “The Particle Swarm-Explosion,
Stability, and Convergence in a Multidimensional Complex
Space,” IEEE Transactions on Evolutionary Computation, vol. 6,
pp. 58-73, 2002.

[11] Y. Shi and R. C. Eberhart, “Parameter Selection in Particle Swarm
Optimization,” presented at Evolutionary Programming VII, 1998.

[12] F. Van den Bergh and A. P. Engelbrecht, “Effects of Swarm Size
on Cooperative Particle Swarm Optimisers,” presented at GECCO
2001, San Francisco, USA, 2001.

[13] J. Kennedy, “Small Worlds and Mega-Minds: Effects of
Neighborhood Topology on Particle Swarm Performance,”
presented at Congress on Evolutionary Computation, Washington
D.C., 1999.

6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 1. ROSENBROCK 2D WITH PSO TYPE 1’’. Energy evolution for a typical run. Near the solution, as kinetic energy can not appreciably re-increase,
improvement is difficult.

Fig. 2. ROSENBROCK 2D WITH APSO 1’’. Energy evolution for a typical run. When the swarm does not find a solution, it globally re-increases its energy by
adding new particles, that is to say its ability to explore the search space. And when the process seems to converge nicely, it decreases it by removing
“bad” particles.

Fig. 3. ROSENBROCK 2D WITH APSO 1’’. Evolution of the neighborhood size of some particles during a typical run. A particle which does not need to increase
its neighborhood, like 5 or 17 (which has been generated after about 400 evaluations), is necessarily a “good” one. A solution will be found by
particle 17.

7

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

.
Fig. 4. VALUE EVOLUTION. Particle 17 reaches a solution point first for it succeeds to globally increase its coefficient, i.e. decrease its search domain.

Table I. NON-ADAPTIVE VS ADAPTIVE. This table shows the results of PSO Type 1’’ after 40000 evaluations, and comparison with APSO 1’’ running for the
same processor time. For each function the global minimum is zero. The unit cost is equal to 40000/(number of evaluations for APSO 1’’). The adaptive version
is significantly better than the non-adaptive one

PSO Type 1’’
100 runs of

40000
evaluations

APSO 1’’
100 runs of
time T

Function Search space Result
(standard
deviation)

Processor
time units

T

Result
(standard
deviation)

Mean
swarm

size

Mean
neighb.

size

Mean
number of
evaluations

Adaptation
cost

Ackley [-32,32]30 1.75x10-8

(1.86x10-8)
1156 0.03x10-8

(0.05x10-8)
12.83 3.35 21921 1.82

Griewank [-300,300]30 0.008
(0.016)

1278 0.006
(0.010)

21.96 3.32 30054 1.33

Rastrigin [-5.12,5.12]30 79.31
(19.01)

1203 51.35
(16.80)

30.98 3.18 32992 1.21

Rosenbrock [-10,10]30 48.00
(32.02)

1147 23.38
(2.74)

21.84 3.32 31669 1.26

Table II. ALL THREE ADAPTATIONS ARE USEFUL. When one parameter is kept constant, on the same examples as in Table 1, the results are globally not so good
(mean after 100 runs). We have a better result just for the Griewank function with a constant neighborhood size equal to 3, and the Rastrigin function with a
constant equal to 4.1.

Function N=20 ϕ=4.1 |h i|=3
Ackley 386.9x10-8 56511.7x10-8 2789.8x10-8

Griewank 0.026 0.006 0.0048
Rastrigin 84.51 40.03 51.62

Rosenbrock 48.36 37.411 54.31

8

	I. INTRODUCTION
	II. Principles and qualitative reasonings
	A. What a particle knows
	B. What a particle can do
	1) Suicide
	2) Generation
	3) Modifying coefficient
	4) Change its neighborhood

	C. Acting, but when?

	III. An implementation
	A. Precise definitions
	1) Comparing particles
	2) Improvement
	3) Improvement threshold
	4) Best neighbor, worst neighbor

	B. Mathematical formulations for reasoning
	1) Swarm size (Rule 1 and Rule 1’)
	2) Coefficients (Rule 2 and Rule 2’)
	3) Neighborhood sizes (Rule 3 and Rule 3’)

	IV. Illustration
	A. A detailed example
	B. Some global results

	V. Conclusion and future work

