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Abstract—In  Particle  Swarm  Optimization,  each  particle
moves in the search space and updates its velocity according to
best  previous  positions  already  found  by  its  neighbors  (and
itself), trying to find an even better position. This approach has
been proved to be powerful but needs parameters predefined by
the  user,  like  swarm  size,  neighborhood  size,  and  some
coefficients,  and  tuning these  parameters  for  a  given  problem
may be, in fact, quite difficult. This paper presents a framework
for  designing  adaptive  particle  swarm optimizers  without  any
“supervisor”, in order to obtain autonomous methods in which
the user has almost nothing to do but describe the problem. To
illustrate the adaptation process, a possible implementation for a
simple  PSO  version  is  given,  so  that  we  can  examine  how
different,  and globally better,  is the behavior of the swarm on
some classical test functions.

Index Terms—adaptation, optimization, particle swarm.

I. INTRODUCTION

hen  using  a  non-adaptive  Particle  Swarm Optimizer
(PSO), as defined in  [1]–[2], you may need to run it

several  times using different parameter sets before finding a
“good”  one.  To  avoid  this  drawback,  some  attempts  have
already  been  made  to  define  an  adaptive  PSO  [3]–[9],  for
example by using selection, by modifying a coefficient during
the process itself, or by clustering techniques.

W

Here,  we  present  a  more  complete  framework
systematically based on the particle point of view, which has
mainly  local  information.  The  key  question  is  then  “What
would I do if I were a particle”? To illustrate this approach by
giving a possible implementation, we also build an adaptive
PSO version from a very simple non-adaptive one, so that we
can  examine  the  global  behavior  of  the  swarm  and  report
results on some classical test functions. 

II.PRINCIPLES AND QUALITATIVE REASONINGS 

et H={x} be the search space, that is to say the set of the
possible positions, and let D be its number of dimensions.

Let  be the objective function on H, S the target and  the
maximum admissible  error  (or  minimum wanted  accuracy).
Let   be the error  function. We do not examine
here the important problem of the stopping criterion for the
iterations,  and we assume we have at  least  one. When  S is
known, this stopping criterion is simply f(x)<

L

A  key  concept  in  particle  swarm  optimization  is  the
“neighborhood”  of  a  particle.  No  matter  how  it  is  defined
(using distances or not, in particular), it can always be seen as

Manuscript received June 30, 2002. 
M. Clerc is with the France Télécom Recherche & Développement, 90000,

Belfort, France (e-mail: Maurice.Clerc@ WriteMe.com). 

a list of particles, including the particle whose neighborhood is
being  defined.  The  most  widely  used  neighborhood  is  the
“circular” one. For example, if the particles are numbered (0,
1, 2, 3), the neighborhood of size 3 for the particle 3 is {3-1, 3,
3+1} modulo(4) i.e. {2, 3, 0}. 

Any PSO algorithm defines,  for a given particle  ,  its

position  x i( t )=( xi ,1( t ), . . . , x i , d ( t ) , . . . , x i ,D( t ))  and

its velocity  v i (t )=( v i ,1(t ) , . . . , v i , d (t ) , . . . , v i , D( t ))  at

time  t+1,  depending  on  the  ones  at  time  t.  To  present  the
adaptation  principles,  here  we  choose  a  simple  version  of
PSO, which is known as PSO Type 1’’ [10]. This has just one
coefficient, but the principles can easily be extended to more
complicated systems. It  is  defined in detail  in  [10],  and we
give here just the main formula:

v i , d(t+1)= χ (v i , d (t )+rand (0 . . .ϕ
2

)( pi , d (t )−x i , d(t )))

, (1)

+rand (0. . . ϕ
2
)(gi , d (t )−x i ,d (t ))

x i , d (t+1)=x i , d (t )+v i ,d (t+1)
with

χ= 2

ϕ−2+√ϕ2−4ϕ

where  pi=( pi ,1 , . . . , pi , d , . . . , pi , D ) is  the  best  position

found  so  far  by  the  particle  Pi ,  and

gi=( gi ,1 , . . . , gi , d , . . . , gi ,D )  the  best  position  found  so

far by the neighbors (remember that one of them is the particle

itself),  and  where  rand (0. . .u) stands  for  “a  random

number  (uniform  distribution)  in  [ 0 ,u ] .”  Note  that  this
coefficient is a priori different for each component, so we can
not write just a vector equation like

v i (t+1)= χ (v i(t )+rand (0. . . ϕ
2
)(pi(t )−xi (t)))

+rand (0. . . ϕ
2
)(gi (t)−x i(t )) (2)

for  such  a  formula  will  imply  exactly  the  reverse.  For

example, it will mean that the coefficient rand (0. . . ϕ/2) is
computed just once and has the same value for all components

of (pi( t )−xi (t )) . However is constant and the same for

1

Think Locally, Act Locally – A Framework for
Adaptive Particle Swarm Optimizers

Maurice Clerc



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

all particles.
To transform this model into an adaptive one, we have to

modify three parameters  during the process:  the swarm size
(by adding and removing some particles),  the neighborhood
size of each particle,  and a different  coefficient  ϕ for each

particle, called now ϕi . Here, we try to do that without any

“supervisor ”,  just  by  local  actions,  assuming  that  “local”
means “in the neighborhood of a particle”.  So each particle
needs some knowledge, and some abilities.

A. What a particle knows

At  each  time  step  t,  each  particle  Pi  can  obtain  the

following information from particles P j  of its neighborhood:

- the position x j( t )  (written just x j , to simplify),
- the best position ever found p j ,
- the  first  error  function  evaluation  (we  will  need  it  for

improvement  evaluation),  i.e.  f ( x j (t 0 , j )) ,  where
t0 , j is the time step at which P j  has been generated,

- the velocity v j ,
and also, from itself:
- the coefficient ϕi  used instead of ϕ  in (1),
- the neighbour list hi ,
- the last time instant it has performed any adaptation task,
- the previous position value f(xi(t-1)). 

Although the process is designed to be as local as possible,
the particle also needs a few global information:
- an adaptive threshold  Δ for “enough improvement”,  as

defined below,
- the time t, for, as we will see, adaptation has to be made

just from time to time,
- the swarm size  N ( t ) (called  simply  N throughout the

rest of the  paper).

B. What a particle can do

Using this information, the particle has to “think locally, act
locally.” We assume it can perform, as in non-adaptive PSO,
all  computations  required  by  the  system  (1),  and  can  also
compute f(x) for any given position x. Now, for the adaptation
process, four actions are possible: 
- kill itself,
- generate a new particle,
- modify its coefficient ϕi ,
- modify its neighbour list.

Killing  itself  and  generating  a  new  particle  are  both
modifying the swarm size. In “classical” PSO, it is constant.
Some authors use 20, some others 30, and some studies have
been done showing the influence of the swarm size [1], [11]–
[12], but we have no rule saying a given size is better than
another for a given kind of problem. So it seems simpler to let
the algorithm modify this size, from time to time, by removing

some particles and adding new ones. 
We  now  give  the  six  rules  defining  our  framework,  as

qualitative  “reasoning”  for  the  adaptive  actions.  Remember
that in these rules, “local” from a particle point of view means
“in  my  neighborhood,  amongst  my  neighbors  (including
myself).” In the next section, we will give some mathematical
formulations for a possible implementation.

1) Suicide
The reasoning proposed is:
Rule 1
“There  has  been  enough  local  improvement.  However,  I

can’t  claim any credit  for  I am the worst local  particle.  It's
time to kill myself.”

Improvement  for a particle is  evaluated by comparing its
position when it has been generated and the best position it has
found after that.

2) Generation
Now, the reasoning is:
Rule 1’
“There has been not enough local improvement, although I

am the local best. It's time to generate a new particle.”
3) Modifying coefficient

The idea is that if everything goes well, the particle can try to
speed up its convergence, taking the risk of decreasing the part
of  the  search  space  it  explores.  On  the  contrary,  if  its
improvement is not that good, it would be better to slow down
the rate of convergence, and take time to explore a wider part
of the search space. 
So, a general pair of rules could be
Rule 2
“The more I improve myself, the smaller can be the part of the
search space I explore.”

Rule 2’
“The less I improve myself, the bigger should be the part of
the search space I explore.”
In  PSO Type  1’’,  this  can  be  done  just  by
increasing/decreasing the ϕ  value. This technical point is not
really obvious, but it has been shown in [10] by computing the
radius of a circular attractor in the phase space of the particle.
However, you can note in (1) that both χ and χϕ are indeed

decreasing when ϕ increases above 4, and so does velocity.
4) Change its neighborhood

Although  different  topologies  are  possible  for  the
neighborhood,  no clear  and constant  effects  has  been found
[13]. So, for the moment, we use the simple circular one we
have seen above. However,  the  size of this neighborhood is
constantly modified for each particle during the process. 

The reasoning is:
Rule 3
“I am the local best, and I have improved myself enough, so

I don’t need to ask so many neighbors for more information. I
can reduce my neighborhood.”
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Rule 3’
“I  am  the  local  best,  but  I  have  not  improved  myself

enough,  so  I  need  more  information.  I  have  to  ask  more
neighbors.” 

Note that the above implies a particle that is not the local
best does not change its neighborhood size at all. Also, as soon
as different particles start having different neighborhood sizes,
the relation “to be the neighbor of” ceases to be a symmetric
one. In fact, in such a case, it would be better to not use the
term “neighborhood” but something like “knowable group” or
“informers.”

C. Acting, but when?

Checking for adaptations at  each time step is not a  good
idea.  Not  only  because  it  has  a  cost,  but  also  because,  for
example,  when  you add  a  new particle,  this  particle  needs
some time “to prove itself.” Unfortunately, there does not exist
a  method that  is  mathematically  proven to be optimal.  The
following rule of thumb seems to work well in practice.

 When you use a “circular” neighborhood, an estimation of
the number of time steps before the next check is

Δt=E (N /2 ) (3)

where N is the current swarm size, and E(u) the integer part of
u. Intuitively, it is quite logical that it should be an increasing
function of  N, for if there are a lot of particles, they do not
need to spend time to be “intelligent,” so they can perform
adaptations less often.
Also,  it  has  been  found  that  it  is  better,  in  a  given
neighborhood, to not perform all adaptations for all particles at
the same time. In particular, at each time step, just one suicide
or one generation per neighborhood is enough. One could say
that  the  “thinking  unit”  is  not  the  particle  but  the
neighborhood.

III. AN IMPLEMENTATION

o illustrate the qualitative principles we have seen and to
be able to give some numerical results, we give here a

possible implementation. There is  no doubt that  better  ones
can be found.

T
A. Precise definitions

1) Comparing particles
First, we have to define how to compare the particle Pi and 

the particle P j , i.e. to define a relation order (read “better 

than”) on the set of particles. We do not take into account the 
current positions, but only the best previous ones:
 
f ( pi )≤f ( p j )⇔Pi≻P j (4)

 
Note that it means we have Pi≻Pi . More generally, the 

order relation makes sense even for particles with exactly the 

same best error function value (it may occur, particularly in a 
discrete search space).

2) Improvement
The improvement for a given particle Pi is defined by

δ (Pi )=
f ( x i( t0 , i ))−f ( pi)

f (x i( t0 ,i ))+ f ( pi )
. (5)

It  is  a  relative  improvement,  always  defined,  for  if  the
denominator were equal to zero, it would mean a solution has
already been found, and the algorithm already stopped.

3) Improvement threshold
The threshold “enough improvement”  is first computed as

follows. After the (random) swarm initialization, the worst  f
value  and  the best  f value  for  the  whole  swarm are  found.
Then the initial threshold is defined by

D=1−
f best
f worst

. (6)

After that, during the process, it is updated by

Δ :=Δ(2−
1

eN ) (7)

each time a particle is removed, and by

Δ := Δ

(2−
1

eN )
(8)

each time a particle is generated. The underlying idea is that
when there has been enough improvement, this threshold can
be increased, and vice versa. Also, the smaller the swarm, the
easier it is to increase the improvement threshold, that is to say
the  less  probable  it  is  that  some  particles  will  be  removed
during the next step, and vice versa. Note that, for simplicity,
we use here just one global threshold, although we can have
one for each neighborhood.

4) Best neighbor, worst neighbor
The best particle Pbest ,i in the neighborhood of the particle

Pi  is “better than” (order relation  ≻ ) any other in this 

neighborhood. More precisely, we have

Pbest ,i∈ {Pk , Pk ∈hi ,∀ Pl∈hi , Pk≻Pl } . (9)

There may be several particles like that, and in case of a tie,
it  is  chosen  at  random among them. For the  worst  particle

Pworst , i , we have a similar definition

Pworst , i∈ {Pk , Pk ∈hi ,∀ Pl∈hi , Pl≻Pk } . (10)
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B. Mathematical formulations for reasoning

1) Swarm size (Rule 1 and Rule 1’)
The qualitative reasoning for suicide can now be formulated

as follows

Pi=Pworst ,i δ(Pbest , i)≥Δ⇒ remove Pi (11)

Similarly, the formula for generation is

Pi=Pbest , iδ (Pbest ,i)<Δ⇒ add a particle (12)

Note 1 – There are  a  lot  of  ways to add a new particle,
randomly or semi randomly (guided generation). As it is not
the purpose of this paper to study them, in the examples below
we use only pure random generation inside the search space H.

Note  2  –  When  a  particle  is  removed  or  added,  some
neighbor lists have to be redefined.

Note 3 – There is no rule for the initial swarm size. You can
perfectly  begin  with  just  one  particle,  but,  experimentally,
three seems to be a better choice.

Note  4  –  Theoretically,  you  do  not  need  to  define  a
minimum swarm size. Nevertheless, in some cases, the swarm
disappears  completely  before  finding  a  solution,  so,  in
practice,  a  minimum  value  is  indeed  given  (three,  in  the
examples below). If the swarm size is equal to this value, no
suicide  is  permitted.  Also  we  do  not  need  to  define  a
maximum  swarm  size  but  in  practice  we  might  have  to,
considering  the  limitations  of  our  computer.  When  this
maximum is reached no generation is permitted.

2) Coefficients (Rule 2 and Rule 2’)
We have to define how to modify  ϕi in a given interval

[ϕmin , ϕmax ] , knowing its current value, the improvement of

the particle δ (Pi )  and the threshold Δ . As initial value for

each particle, we simply choose  (ϕmin+ϕmax) /2 , and then,

as  δ (Pi )−Δ is  theoretically  in  ]−∞ ,1 ] ,  we  use  the

following formulas, which are consistent with Rule 2 and Rule
2’ and ensure that ϕi is always between ϕmin and ϕmax :

mi=δ (Pi )−Δ .

mi≥0⇒δϕ=( ϕmax−ϕi )mi

mi<0⇒ λ=( ϕmax−ϕi)/( ϕi−ϕmin )

δϕ=( ϕi−ϕmin )((1−mi)
−λ

−1) (13)

 
3) Neighborhood sizes (Rule 3 and Rule 3’)

Let  δ|hi| be an  incremental  modification  of  the  particle

Pi’s neighborhood size. A possible set of formulas for Rule 3
and Rule 3’ is

Pi=Pbest , i

δ (Pi)≥Δ⇒ δ|hi|:=δ|hi|−
δ|hi|−1

N−1

δ (Pi)<Δ⇒ δ|hi|:=δ|hi|+
N−δ|hi|

N−1
(14)

These formulas are the simplest ones (linear) that assure the
neighborhood size is at least equal to 1 (the particle itself) and
at most equal to N (the whole swarm). Note that the size being
an integer,  such modifications have a real  effect  only when
their “accumulation” is greater than (or equal to) 1 (in absolute
value). Then we have

δ|h j|≥1⇒h j :=h j+1 , δ|h j|:=0  and

δ|h j|≤−1⇒h j :=h j−1 , δ|h j|:=0 . (15)

IV. ILLUSTRATION

e now have all we need to really run an adaptive PSO,
which we will  call  APSO 1’’.  Below we give some

examples. The first one is quite detailed, in order to examine
the  behavior  of  the  swarm;  the  others  to  show  the  global
performances. For comparison we use PSO Type 1’’, with ϕ
value equal to 4.1,  a  swarm  size  equal  to  20,  and  a
neighborhood size equal  to three  for all  particles.  Note that
these parameters have been manually chosen after thousands
of trials, in order to obtain good results on most of classical
test functions. 

W

For APSO 1’’, we define a minimum swarm size equal to
three,  a  minimum  neighborhood  size  equal  to  three,  no
maximum for the swarm size,  and,  for  all  ϕi ,  the interval

. Note that, from a theoretical point of view, this last
choice is quite arbitrary and, thus, quite frustrating, for it  is
just  a  rule  of  thumb.  In  all  the  examples  where  we  run
PSO Type 1’’, we can see (no rigorous proof yet) that there is
indeed an optimal value near to 4.1.

A. A detailed example

Let us study first in detail a well-known small example: the
Rosenbrock’s /Banana function on [-10,10]2.

To see the difference between the two approaches, we can
look at the evolution of some global descriptors:  the swarm
energies. 

The (relative) kinetic energy of the particle  Pi  is defined

by 

ek , i ( t )=
1
2 ∑

d=1

D

(
vi , d ( t )

xmax (d )−xmin (d ) )
2

, (16)

where  xmax (d ) (resp.  xmin (d) )  is  the  maximum  (resp.
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minimum) for  the dth component  of  any position inside the
search space.

The kinetic energy of the whole swarm is then

Ek (t )=∑
i=1

N

ek ,i (t ) . (17)

The potential energy of the particle is defined by 

e p ,i (t )=
f ( xi ( t ))

ε
. (18)

It represents the number of energy steps the particle has to
go down to reach a solution point. The potential energy of the
whole swarm is then

Ep (t )=G∑
i=1

N

e p, i (t ) . (19)

Here,  G is simply an arbitrary constant, chosen so that the
evolution of Ep, Ek, and the swarm size can be easily shown on
the same figure. In this example, G=5.10-14.

As the swarm moves, energies tend to go to zero for both
methods, but not so regularly for the adaptive one, for, from
time to time, a new particle is added. The swarm has then still
the  possibility  to  search  in  a  larger  domain,  and  to  find  a
solution more quickly. For two typical runs, Fig. 1 and Fig. 2
show energies versus the number of evaluations, instead of the
number of time steps. For a constant swarm size, they are the
same,  but  not  for  a  variable  swarm  size,  so  we  use  this
representation for easier  comparisons.  Of course,  as there is
some randomness,  the exact  number  of  evaluations  may be
different  for  another  run,  but  the  global  “patterns”  are  the
same.  It  is  not  globally  true  that  an  adaptive  algorithm  is
always better than a non-adaptive one.  For instance,  in this
particular  case,  with  the  non-adaptive  PSO Type 1’’,  a
constant swarm size equal to 11, a constant neighborhood size
equal to 4, the result is equivalent. However, the point is that
you may have to try a lot of different sets of parameters to find
such a nice one, and unless you are lucky, the sum of all your
trials is far worse than any single run of the adaptive method.

In Fig. 3, we can see how the neighborhood size is modified
for some particles during a run. According to Rule 3,  for  a
“good” particle the neighborhood size is decreasing. So, we
can guess that particle 5 (or 17, generated later)  will find a
solution  (it  is  particle  17,  in  fact).  Note  that  when  a  new
particle is generated it is numbered (labeled) by adding 1 to
the largest  label  ever  used.  So, if  some particles have been
removed, a particle can perfectly have a label greater than the
current swarm size. 

In Fig. 4, we see how particle 17 globally increases its  ϕ
parameter during the process, even if from time to time it has
to  decrease  it.  It  means  it  reduces  its  search  domain  and,
finally, it will indeed find a solution point.

Let  us  now  see  some  results  with  more  difficult  test
functions. For fair comparisons, we define a “unit adaptation
cost” u, proportional to the processor time related to one error
function  evaluation,  during the iterative  process.  If  we take
u=1  for  PSO Type 1’’  and  for  a  given test  function,  we

always  have  u>1 for  APSO 1’’  (adaptation  does  have  a
cost).  This  rate  may  be  decreased  with  better  coding,  but,
anyway, we have to take it into account.

B. Some global results

For  each  example  the  following  method  has  been  used.
First,  PSO Type 1’’  is  launched  100  times,  with  40000
function  evaluations  (that  is  to  say  2000 iterations,  for  the
swarm size is 20). Results are noted, and the mean computer
time  T for a run is evaluated. Second, APSO 1’’ is launched
100 times, and for every launch it was permitted to run for the
time T. Of course, because of the adaptation process, it means
less  function  evaluations  can  be  done,  but  thanks  to  the
adaptation process results should be at least equivalent if not
better.

 For some classical functions Table I shows that it is indeed
the case. Also, as we can see, the mean neighborhood size is
never very different  from three but the mean swarm size is
really  interesting.  We  could  think  that  by  using  this  mean
value (more precisely the nearest integer value) as a constant
swarm size with PSO Type 1’’, we should find a better result.
In  fact,  it  is  not  necessarily  the case.  For  example,  for  the
Rosenbrock function, when we use a constant swarm size of
22, we find a mean value of 58.66 (instead of 48 with a swarm
size of 20). As the result with APSO 1’’ is far better (21.84), it
means  the  fluctuations  of  the  swarm  size  has  indeed  been
cleverer  than  the  use  of  a  constant  size.  Finally,  when  we
compare the number of function evaluations in PSO Type 1’’
(that is, 40000) to the mean number of evaluations, we have an
estimate of the “unit  adaptation cost.” As we can see,  even
though this rate is a bit high for the Ackley example (1.82),
the  result  justifies  this  extra  cost  (mean  result  of  0.03x10-8

instead of 1.75x10-8 for the same processor time).
An interesting question is to know whether the three kind

of adaptations (swarm size,  neighborhood sizes,  coefficients
ϕi ) are all useful. A lot of tests have been done, keeping one

or two of them as constant, with different values and it appears
that the conjunction of the three adaptations is indeed most of
the  time better  than  any other  combination.  An example  is
shown in Table II when one parameter is kept constant. There
are only two cases where it would have better to keep either
the  parameters  or  the  neighborhood  sizes  constant.
Remember,  though, that  the constant  values  used here have
been specifically tuned to give good results with these kind of
functions.

V. CONCLUSION AND FUTURE WORK

 n  the above,  we showed that  an  adaptive  method for
PSO might be a very relevant and strong idea.   In the

non-adaptive  method  some  parameters  may  need  to  be
estimated after a lot of trial runs, which can be difficult.  On

I
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the other  hand,  the adaptive method does  not  constrain  the
user in any way; the user only has to describe the problem;
and the results are equivalent or often better in the adaptive
method.
 However,  the  implementation  example  is  not  completely
satisfying,  for  at  least  three  reasons:  starting point  is  just  a
particular non-adaptive PSO, the adaptation formulas may be
too simple,  and, importantly,  there is still  a parameter  ( ϕ )
whose values need to be arbitrarily  confined within a small
interval, without any mathematical justification. The first two
problems are mainly technical ones, and thanks to the general
framework defined here, that we also proved to be efficient, it
would not be that difficult to study them. In particular it would
be interesting to see if an adaptive deterministic model could
be at least as good as the classical non-adaptive ones, which
use  randomness.  The  third  problem  is  more  difficult  and
clearly needs a theoretical breakthrough.

Also, studying the adaptive process, it appears that the best
description level to understand the behavior of the swarm is
probably  not  the  particle  but  what  we  have  called  the
“knowable  group.”  It  would  certainly  be  interesting  to
examine how knowable groups exchange information as soon
as they have some particles in common, and how they decide
to increase or decrease, speed up or slow down.
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Fig. 1. ROSENBROCK 2D WITH PSO TYPE 1’’. Energy evolution for a typical run. Near the solution, as kinetic energy can not appreciably re-increase, 
improvement is difficult.

Fig. 2. ROSENBROCK 2D WITH APSO 1’’. Energy evolution for a typical run. When the swarm does not find a solution, it globally re-increases its energy by 
adding new particles, that is to say its ability to explore the search space. And when the process seems to converge nicely, it decreases it by removing 
“bad” particles.

Fig. 3. ROSENBROCK 2D WITH APSO 1’’. Evolution of the neighborhood size of some particles during a typical run. A particle which does not need to increase 
its neighborhood, like 5 or 17 (which has been generated after about 400 evaluations), is necessarily a “good” one. A solution will be found by 
particle 17.
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.
Fig. 4.  VALUE EVOLUTION. Particle 17 reaches a solution point first for it succeeds to globally increase its  coefficient, i.e. decrease its search domain.

Table I.  NON-ADAPTIVE VS ADAPTIVE.  This table shows the results of PSO Type 1’’ after 40000 evaluations, and comparison with APSO 1’’ running for the
same processor time. For each function the global minimum is zero. The unit cost is equal to 40000/(number of evaluations for APSO  1’’). The adaptive version
is significantly better than the non-adaptive one

PSO Type 1’’
100 runs of

40000
evaluations

APSO 1’’
100 runs of
time T

Function Search space Result
(standard
deviation)

Processor
time units

T

Result
(standard
deviation)

Mean
swarm

size

Mean
neighb.

size

Mean
number of
evaluations

Adaptation
cost

Ackley [-32,32]30 1.75x10-8

(1.86x10-8)
1156 0.03x10-8

(0.05x10-8)
12.83 3.35 21921 1.82

Griewank [-300,300]30 0.008
(0.016)

1278 0.006
(0.010)

21.96 3.32 30054 1.33

Rastrigin [-5.12,5.12]30 79.31
(19.01)

1203 51.35
(16.80)

30.98 3.18 32992 1.21

Rosenbrock [-10,10]30 48.00
(32.02)

1147 23.38
(2.74)

21.84 3.32 31669 1.26

Table II. ALL THREE ADAPTATIONS ARE USEFUL. When one parameter is kept constant, on the same examples as in Table 1, the results are globally not so good
(mean after 100 runs). We have a better result just for the Griewank function with a constant neighborhood size equal to 3, and the Rastrigin function with a
constant equal to 4.1.

Function N=20 ϕ=4.1 |h i|=3
Ackley 386.9x10-8 56511.7x10-8 2789.8x10-8

Griewank 0.026 0.006 0.0048
Rastrigin 84.51 40.03 51.62

Rosenbrock 48.36 37.411 54.31
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