Comparing two stochastic algorithms on a
benchmark set

14th May 2007

Maurice.Clerc@WriteMe.com, 2006-07-04

Last update: 2007-04-01

Note: I have written a small spreadsheet to compute formula 1 for Gaussian
distributions. You may download it with this paper from my Maths site

http://clerc.maurice.free.fr/Maths/index.htm# Comparing_algorithms

1 Comparing on a given problem

1.1 What “better” means

Let us suppose we have two stochastic optimisation algorithms to
compare, A and B. On a given problem and from the user point of
view, A is better than B if it gives “better results”. But what does
it mean? This can be defined only on a probabilistic way. We run A
and we obtain a result z. We run B and we obtain a result y. We say
that A is better than B if the probability that x is better than y is greater than
0.5

For a minimisation problem we have then to estimate proba (z < y).

1.2 Estimation formula

For a test problem, in order to perform this estimation we can run A
and B T times on it, and collect the results. Note that as A and B are
stochastic algorithms it is important to not have the same sequence
of pseudo-random numbers for each run. There are mainly two ways
to do that:

1. performing the T runs inside a loop

2. performing each run by restarting the program, but by modifying the seed
of the pseudo-random numbers generator

The first method is the best one if the generator is a good enough so
that there is no cycle during the whole process.



The first step is to “guess”, for each algorithm, what kind of prob-
ability distribution represents results at the best, and to estimate
the parameters of this distribution. Usually a normal distribution is
acceptable, and we then just have to compute the mean and the stan-
dard deviation (or more precisely estimations of these parameters).

Let D4 and Dg be the two distributions. So, for a given u, we have

+oo
proba (u < y) = Dp (v)dv

JUu

for running B is equivalent to draw at random y according to dis-
tribution Dp. However running A is similarly equivalent to draw at
random z according to D4. So we have to integrate this probability
over all possible z, weighted by their probability density. The final
formula is then

+oo

proba (x < y) = /

400

( Dg (v) dv) D4 (u)du (1)
— 00 u
Important: Probability density estimations are depending on the
number of runs 7. In particular the standard deviation may decrease
to zero when T increases (however, contrarily to one can think, it
is not always the case). So, when deciding that A is better than B
according to formula 1, we should add “to the best of our knowledge”.



1.3 Example

1.4 —
1.2 4
1.2 4
1.1 4
1.0 4
0.9 4
0.2 4
0.7 4
06 4 m O
05 O CE
0.4 4
0.2 4
0.2 4
01 4
0o | | | | | | | 1

Difu)

Figure 1: Two Gaussian distributions of results

Let us note N (u,0) the normal distribution with a mean equal to
pand a standard deviation 0. We run A on the problem several times
and find D4 ~ N (1,0.3). Similarly we find Dg ~ N (1.5,0.5) (see figure
1). Formula 1 gives us 0.8. It means that if we pick up z at random
according to D4 and y at random according to Dpg, it is perfectly
possible (probability 0.2) that we find y < 2. Or, in other words, if
we run A and B, there is a probability of 0.2 that we find a better
result with B than with A. That is why we have to be very careful
when comparing the two algorithms over a whole benchmark set of
problems.

1.4 A particular case: the success rate

When the performance criterion is not a “direct” value (like say the
best value after N fitness evaluations) but a calculated one, like the
success rate, we need more runs: we need 7" sequences of R runs. For
each sequence the success rate is computed, and for the T success
rates, we compute the mean and the standard deviation.



2 Comparing on a benchmark set

2.1 What “better” means

Let us note first that there is an assumption almost never explicitly
said: a benchmark set is supposed to be representative of the whole
set of problems that the algorithm will have to solve. This assumption
is very strong for it does suppose the following:

e we are able to define equivalence classes and to assign any possible problem
to one class. For example mono-modal, bimodal, etc.

e we know the relative sizes of these classes. For example we know that the
algorithm will have to solve two times more often bimodal functions than
uni-modal ones.

Unfortunately we almost never have such information. So the best
that we can do is to experimentally build a “reasonable” benchmark
set and to assign the same weight to each function of this benchmark.
Then, saying that A is better than B from the user point of view can
be detailed as follows: If I take at random (uniform distribution) a function
of the benchmark, and if I run A and B, the probability that the result given by
A is better than the one given by B is greater than 0.5

2.2 Example

| | A | B | A better than B |
7 N(10.2) | N(iL2) 638%
7 N@©,1) | N(051) 63.8%
7s N (15,1) | N(10,1) 0.0002%

| {f1, fos f3} | \ \ 42.5% \

Table 1: Benchmark of three functions. Probability density for A and B, proba-
bility for A to be better than B, for each function, and for the whole benchmark

Let F = {f1, f2, f3}a benchmark of three functions. As we can see on
table 1, A is better than B for two functions. So it is tempting to
say it is better on the whole for the benchmark. However, according
to the above definition it would be wrong. Algorithm A is indeed
slightly better two times but B is far better one time, and the final
conclusion is that B “wins”.



