
An Universal Random Number GeneratorMaurie.Cler�WriteMe.om2009-12-142010-10-10 Modi�ed soure ode1 Why this tool?For stohasti optimisation, we need to generate pseudo-random numbers on aomputer, aording to a given distribution law. However, in any language, thelist of prede�ned RNG (random number generators) is very short. In pratie,we often have just the uniform one U(0, 1), and the standard normal one N (0, 1).Sometimes, we may have a few more RNG: logisti, Cauhy, exponential, osine,hyperboli, et., but it may be not enough. In partiular, it is usually di�ult to�nd a RNG when the distribution law is multimodal.In pratie, it means that researhers tend to adapt their models to the availableRNG, as it should be the ontrary. Here, we show how to de�ne an �universal�RNG, by starting from U(0, 1).2 Theoretial approahLet f be a probability distribution. We onsider it only on its support. It meansthat it is stritly positive. Theoretially, the method is then a simple two stepsone:
• solve the di�erential equation dx

dh = f (h). It gives a funtion x (h) stritlyinreasing
• �nd the inverse h (x)Then, if x follows an uniform distribution, h follows f . The idea of this �inversionmethod� is not new (see for example http://g.ss.arleton.a/~lu/hapter_two.pdf)but it is here simpli�ed, and we give below a tool (C ode) to apply it.1

Figure 1: Linear distribution f , and �onversion� Uniform x to f , thanks to h3 Examples3.1 UniformWe have f (u) = 1, on [0, 1] . Then, dx
dh = 1. A solution is x = h, i.e. h = x.3.2 LinearFor example f (u) = 2u, on]0, 1]. Then dx

dh = 2h. A solution is x = h2. Theinverse is h =
√
x. On the �gure 1 (right), we an intuitively see what happens.An uniform distribution for x indeed implies a non uniform one for h, whose densityis inreasing on]0, 1].3.3 GaussianHere f (u) = 1

√

2π
e−

u
2

2 . Then, and in order to have x always in [0, 1] , a solutionof dx
dh = f (h) is

x (h) =
1

2
+

1√
2π

ˆ h

0

e−t2/2dtsometimes written as x (h) = 1

2
erf

(
h
√

2

), where erf is the �error funtion�.Unfortunately, it an not be expressed in terms of �nite additions, subtrations,multipliations, and root extrations, and so must be either omputed numeriallyor otherwise approximated. And in pratie, we have to de�ne a �nite interval for
u. 2

Figure 2: Normal distribution f , and �onversion� Uniform x to f , thanks to h4 URNG in pratie4.1 MethodWe suppose f de�ned on [a, b]. We have
x (h) = x (a) +

ˆ h

a

f (u) duAs we an see below, we do not need to know x(a). Let δ be (b− a) / (n− 1). Weompute �rst f on n points (u1 = a, u = a+ δ2, . . . , un = b) and then
x̃ (h) = δ

k∑

i=1

f (ui)with uk−1 < h ≤ uk. In pratie, we ompute the n values x̃ (ui). For theexample 3.3, and for n = 200, we an plot the urve ui vs x̃ (ui), whih is anestimation of h (x). As we an see on �gure 3, this estimation is pretty good. Notethat, anyway, it does not need to be very preise, for we will just use it to generatepseudo-random numbers. The method is the following:
• generate a random number r aording to U (0, 1)

• �nd i so that x̃ (ui) ≤ r ≤ x̃ (ui+1)

• take h = a + ui + δ (r − x̃ (ui)) / (x̃ (ui+1)− x̃ (ui)) as �nal result of therandom number generation (linear interpolation)We an hek that it works by generating a big number of h and by plotting thehistogram of frequenies for a given lass size.3

Figure 3: Normal distribution. Comparison between h (x) and the estimation for
n = 200

Figure 4: Paraboli distribution. Histogram for 2000 points and lass size = 0.2.On the left, with the C funtion rand(). On the right, with the uniform RNGKISS, whih is less biased4.2 Paraboli exampleLet us apply this method for the �paraboli� distribution de�ned by f (u) =

3 (u− 1)
2
/2 on [0, 2]. We generate 2000 points aording to U (0, 1), and om-pute the 2000 orresponding h by using the above method, with n = 101. Thehistogram of these 2000 h values is given on the �gure 4. We an see that theprobability distribution is indeed very near of what we want. Note that the rand()funtion in C is biased (the density is not really uniform, and a bit too low near1). So it may interesting to use a better uniform RNG, like KISS.4

Figure 5: Multimodal distribution. Histogram for 2000 points (lass size=0.4),and theoretial urve4.3 Multimodal exampleThe wanted probability distribution is given by f (u) = (5 + u ∗ sin (u)) /8π. Thehistogram on the �gure 5 shows that URNG generate random points that indeedfollow this probabilisti law.5 C odeThe following C ode an of ourse be improved. Note that, though, we do notneed something very preise for anyway the probabilisti models used in stohastioptimisation are largely approximate./* Copyright (C) Maurie 2009 <Maurie.Cler�WriteMe.om>Starting for the uniform distribution U(0,1),generate random numbers aording to any otherdistribution f.Last update 2010-10-10Fixed a bug (wrong frequeny near u=1)*/#define Nmax 201#define Gmax 2000#inlude "stdio.h"#inlude "math.h"#inlude <stdlib.h>#inlude <time.h>// To generate pseudo-random numbers with KISS#define ulong unsigned long 5

#define RAND_MAX_KISS ((unsigned long) 4294967295)// Subroutines ulong rand_kiss();// For the pseudo-random number generator KISSvoid seed_rand_kiss(ulong seed);//double alea (double a, double b);double alea_f(double min, double delta);double f(double u,int distrib);// Global variablesdouble infinity = 1.e16;double pi;double x[Nmax℄;double zero=1.e-16;// FilesFILE * f_urng;int main() {double delta; int distrib; int g; int gener; double h; int i;double max, min; int n;pi=aos(-1); f_urng = fopen ("f_urng.txt", "w");distrib=6;// 0 = uniform on [a,a+1℄// 1 = linear on [0,1℄// 2 = normal on [-a,a℄, with a big enough so that// sum(f) on [-a,a℄ almost equal to 1// 3 = paraboli on [0,2℄// 4 = bi-linear on [0,1℄// 5 = multimodal on [0, 2pi℄// 6 = Dereasing on [0,a℄, for initialisation in [0,a℄^D// a=max and D are hard oded in f() n=101; min=0;// Support of f (the target distribution)max=1; delta=(max-min)/(n-1); gener=1000;// Number of random numbers to generate// Estimate one x = sum(f)x[0℄=0; x[n℄=1;for(i=1;i<n;i++){ x[i℄=x[i-1℄ + delta*f(min+i*delta,distrib); }// Use the RNG for(g=0;g<gener;g++) {h=alea_f(min,delta);// Save for future use (histogram, in partiular)fprintf(f_urng,"%f\n",h); }return (0); }//===double alea (double a, double b) {6

// random number (uniform distribution) in [a b℄double r;//r=a + (double) rand () * (b - a)/RAND_MAX;// It may be a good idea to use a better uniform RNG, like KISS// for this one is biasedr=a+(double)rand_kiss()*(b-a)/RAND_MAX_KISS; return r;}//===double alea_f(double min, double delta) {double h; int k; double r;// x is a global list, omputed one// Generate aording to U(0,1)r=alea(0,1);// Find k so that x[k-1℄ <= r <=x[k℄ k=0;while (r>x[k℄) { k=k+1; }//Linear interpolationh=min+(k-1)*delta + delta*(r-x[k-1℄)/(x[k℄-x[k-1℄);return h;}//===double f(double u, int distrib) {// Probability distribution.// Integral on [min, max℄ must be equal to 1// ADD YOUR OWN DISTRIBUTIONdouble a; double D; double p0,p1;swith(distrib){ default: // Uniform on [a, a+1℄ return 1;ase 1: // Linear on [0,1℄ return 2*u;ase 2: // Normal return exp(-u*u/2)/sqrt(2*pi);ase 3: // Paraboli on [0,2℄ return 1.5*(u-1)*(u-1);ase 4: // Bi-linear on [0,1℄a=0.2; p0=0.5; p1=2*(1-p0*a/2)/(1-a); // So that sum(f)=1if(u<=a) return p0*(1-u/a); return p1*(u-a)/(1-a);ase 5: // Multimodal on [0,2pi℄ return (5+u*sin(u))/(8*pi);ase 6: // Dereasing for initialisation in optimisationa=1; D=2;if(u>zero) return pow(u/a,1./D-1)/D; else return infinity;}}//== KISS/* A good pseudo-random numbers generatorThe idea is to use simple, fast, individually promisinggenerators to get a omposite that will be fast, easy to ode7

have a very long period and pass all the tests put to it.The three omponents of KISS arex(n)=a*x(n-1)+1 mod 2^32 y(n)=y(n-1)(I+L^13)(I+R^17)(I+L^5),z(n)=2*z(n-1)+z(n-2) +arry mod 2^32 The y's are a shift registersequene on 32bit binary vetors period 2^32-1; The z's are a simplemultiply-with-arry sequene with period 2^63+2^32-1.The period of KISS is thus 2^32*(2^32-1)*(2^63+2^32-1) > 2^127*/stati ulong kiss_x = 1; stati ulong kiss_y = 2;stati ulong kiss_z = 4;stati ulong kiss_w = 8; stati ulong kiss_arry = 0;stati ulong kiss_k;stati ulong kiss_m;void seed_rand_kiss(ulong seed) { kiss_x = seed | 1;kiss_y = seed | 2;kiss_z = seed | 4; kiss_w = seed | 8; kiss_arry = 0; }ulong rand_kiss() { kiss_x = kiss_x * 69069 + 1;kiss_y ^= kiss_y <�< 13;kiss_y ^= kiss_y >�> 17; kiss_y ^= kiss_y <�< 5;kiss_k = (kiss_z >�> 2) + (kiss_w >�> 3) + (kiss_arry >�> 2);kiss_m = kiss_w + kiss_w + kiss_z + kiss_arry;kiss_z = kiss_w;kiss_w = kiss_m; kiss_arry = kiss_k >�> 30;return kiss_x + kiss_y + kiss_w;}

8

