
An Universal Random Number GeneratorMauri
e.Cler
�WriteMe.
om2009-12-142010-10-10 Modi�ed sour
e
ode1 Why this tool?For sto
hasti
 optimisation, we need to generate pseudo-random numbers on a
omputer, a

ording to a given distribution law. However, in any language, thelist of prede�ned RNG (random number generators) is very short. In pra
ti
e,we often have just the uniform one U(0, 1), and the standard normal one N (0, 1).Sometimes, we may have a few more RNG: logisti
, Cau
hy, exponential,
osine,hyperboli
, et
., but it may be not enough. In parti
ular, it is usually di�
ult to�nd a RNG when the distribution law is multimodal.In pra
ti
e, it means that resear
hers tend to adapt their models to the availableRNG, as it should be the
ontrary. Here, we show how to de�ne an �universal�RNG, by starting from U(0, 1).2 Theoreti
al approa
hLet f be a probability distribution. We
onsider it only on its support. It meansthat it is stri
tly positive. Theoreti
ally, the method is then a simple two stepsone:
• solve the di�erential equation dx

dh = f (h). It gives a fun
tion x (h) stri
tlyin
reasing
• �nd the inverse h (x)Then, if x follows an uniform distribution, h follows f . The idea of this �inversionmethod� is not new (see for example http://
g.s
s.
arleton.
a/~lu
/
hapter_two.pdf)but it is here simpli�ed, and we give below a tool (C
ode) to apply it.1

Figure 1: Linear distribution f , and �
onversion� Uniform x to f , thanks to h3 Examples3.1 UniformWe have f (u) = 1, on [0, 1] . Then, dx
dh = 1. A solution is x = h, i.e. h = x.3.2 LinearFor example f (u) = 2u, on]0, 1]. Then dx

dh = 2h. A solution is x = h2. Theinverse is h =
√
x. On the �gure 1 (right), we
an intuitively see what happens.An uniform distribution for x indeed implies a non uniform one for h, whose densityis in
reasing on]0, 1].3.3 GaussianHere f (u) = 1

√

2π
e−

u
2

2 . Then, and in order to have x always in [0, 1] , a solutionof dx
dh = f (h) is

x (h) =
1

2
+

1√
2π

ˆ h

0

e−t2/2dtsometimes written as x (h) = 1

2
erf

(
h
√

2

), where erf is the �error fun
tion�.Unfortunately, it
an not be expressed in terms of �nite additions, subtra
tions,multipli
ations, and root extra
tions, and so must be either
omputed numeri
allyor otherwise approximated. And in pra
ti
e, we have to de�ne a �nite interval for
u. 2

Figure 2: Normal distribution f , and �
onversion� Uniform x to f , thanks to h4 URNG in pra
ti
e4.1 MethodWe suppose f de�ned on [a, b]. We have
x (h) = x (a) +

ˆ h

a

f (u) duAs we
an see below, we do not need to know x(a). Let δ be (b− a) / (n− 1). We
ompute �rst f on n points (u1 = a, u = a+ δ2, . . . , un = b) and then
x̃ (h) = δ

k∑

i=1

f (ui)with uk−1 < h ≤ uk. In pra
ti
e, we
ompute the n values x̃ (ui). For theexample 3.3, and for n = 200, we
an plot the
urve ui vs x̃ (ui), whi
h is anestimation of h (x). As we
an see on �gure 3, this estimation is pretty good. Notethat, anyway, it does not need to be very pre
ise, for we will just use it to generatepseudo-random numbers. The method is the following:
• generate a random number r a

ording to U (0, 1)

• �nd i so that x̃ (ui) ≤ r ≤ x̃ (ui+1)

• take h = a + ui + δ (r − x̃ (ui)) / (x̃ (ui+1)− x̃ (ui)) as �nal result of therandom number generation (linear interpolation)We
an
he
k that it works by generating a big number of h and by plotting thehistogram of frequen
ies for a given
lass size.3

Figure 3: Normal distribution. Comparison between h (x) and the estimation for
n = 200

Figure 4: Paraboli
 distribution. Histogram for 2000 points and
lass size = 0.2.On the left, with the C fun
tion rand(). On the right, with the uniform RNGKISS, whi
h is less biased4.2 Paraboli
 exampleLet us apply this method for the �paraboli
� distribution de�ned by f (u) =

3 (u− 1)
2
/2 on [0, 2]. We generate 2000 points a

ording to U (0, 1), and
om-pute the 2000
orresponding h by using the above method, with n = 101. Thehistogram of these 2000 h values is given on the �gure 4. We
an see that theprobability distribution is indeed very near of what we want. Note that the rand()fun
tion in C is biased (the density is not really uniform, and a bit too low near1). So it may interesting to use a better uniform RNG, like KISS.4

Figure 5: Multimodal distribution. Histogram for 2000 points (
lass size=0.4),and theoreti
al
urve4.3 Multimodal exampleThe wanted probability distribution is given by f (u) = (5 + u ∗ sin (u)) /8π. Thehistogram on the �gure 5 shows that URNG generate random points that indeedfollow this probabilisti
 law.5 C
odeThe following C
ode
an of
ourse be improved. Note that, though, we do notneed something very pre
ise for anyway the probabilisti
 models used in sto
hasti
optimisation are largely approximate./* Copyright (C) Mauri
e 2009 <Mauri
e.Cler
�WriteMe.
om>Starting for the uniform distribution U(0,1),generate random numbers a

ording to any otherdistribution f.Last update 2010-10-10Fixed a bug (wrong frequen
y near u=1)*/#define Nmax 201#define Gmax 2000#in
lude "stdio.h"#in
lude "math.h"#in
lude <stdlib.h>#in
lude <time.h>// To generate pseudo-random numbers with KISS#define ulong unsigned long 5

#define RAND_MAX_KISS ((unsigned long) 4294967295)// Subroutines ulong rand_kiss();// For the pseudo-random number generator KISSvoid seed_rand_kiss(ulong seed);//double alea (double a, double b);double alea_f(double min, double delta);double f(double u,int distrib);// Global variablesdouble infinity = 1.e16;double pi;double x[Nmax℄;double zero=1.e-16;// FilesFILE * f_urng;int main() {double delta; int distrib; int g; int gener; double h; int i;double max, min; int n;pi=a
os(-1); f_urng = fopen ("f_urng.txt", "w");distrib=6;// 0 = uniform on [a,a+1℄// 1 = linear on [0,1℄// 2 = normal on [-a,a℄, with a big enough so that// sum(f) on [-a,a℄ almost equal to 1// 3 = paraboli
 on [0,2℄// 4 = bi-linear on [0,1℄// 5 = multimodal on [0, 2pi℄// 6 = De
reasing on [0,a℄, for initialisation in [0,a℄^D// a=max and D are hard
oded in f() n=101; min=0;// Support of f (the target distribution)max=1; delta=(max-min)/(n-1); gener=1000;// Number of random numbers to generate// Estimate on
e x = sum(f)x[0℄=0; x[n℄=1;for(i=1;i<n;i++){ x[i℄=x[i-1℄ + delta*f(min+i*delta,distrib); }// Use the RNG for(g=0;g<gener;g++) {h=alea_f(min,delta);// Save for future use (histogram, in parti
ular)fprintf(f_urng,"%f\n",h); }return (0); }//===double alea (double a, double b) {6

// random number (uniform distribution) in [a b℄double r;//r=a + (double) rand () * (b - a)/RAND_MAX;// It may be a good idea to use a better uniform RNG, like KISS// for this one is biasedr=a+(double)rand_kiss()*(b-a)/RAND_MAX_KISS; return r;}//===double alea_f(double min, double delta) {double h; int k; double r;// x is a global list,
omputed on
e// Generate a

ording to U(0,1)r=alea(0,1);// Find k so that x[k-1℄ <= r <=x[k℄ k=0;while (r>x[k℄) { k=k+1; }//Linear interpolationh=min+(k-1)*delta + delta*(r-x[k-1℄)/(x[k℄-x[k-1℄);return h;}//===double f(double u, int distrib) {// Probability distribution.// Integral on [min, max℄ must be equal to 1// ADD YOUR OWN DISTRIBUTIONdouble a; double D; double p0,p1;swit
h(distrib){ default: // Uniform on [a, a+1℄ return 1;
ase 1: // Linear on [0,1℄ return 2*u;
ase 2: // Normal return exp(-u*u/2)/sqrt(2*pi);
ase 3: // Paraboli
 on [0,2℄ return 1.5*(u-1)*(u-1);
ase 4: // Bi-linear on [0,1℄a=0.2; p0=0.5; p1=2*(1-p0*a/2)/(1-a); // So that sum(f)=1if(u<=a) return p0*(1-u/a); return p1*(u-a)/(1-a);
ase 5: // Multimodal on [0,2pi℄ return (5+u*sin(u))/(8*pi);
ase 6: // De
reasing for initialisation in optimisationa=1; D=2;if(u>zero) return pow(u/a,1./D-1)/D; else return infinity;}}//== KISS/* A good pseudo-random numbers generatorThe idea is to use simple, fast, individually promisinggenerators to get a
omposite that will be fast, easy to
ode7

have a very long period and pass all the tests put to it.The three
omponents of KISS arex(n)=a*x(n-1)+1 mod 2^32 y(n)=y(n-1)(I+L^13)(I+R^17)(I+L^5),z(n)=2*z(n-1)+z(n-2) +
arry mod 2^32 The y's are a shift registersequen
e on 32bit binary ve
tors period 2^32-1; The z's are a simplemultiply-with-
arry sequen
e with period 2^63+2^32-1.The period of KISS is thus 2^32*(2^32-1)*(2^63+2^32-1) > 2^127*/stati
 ulong kiss_x = 1; stati
 ulong kiss_y = 2;stati
 ulong kiss_z = 4;stati
 ulong kiss_w = 8; stati
 ulong kiss_
arry = 0;stati
 ulong kiss_k;stati
 ulong kiss_m;void seed_rand_kiss(ulong seed) { kiss_x = seed | 1;kiss_y = seed | 2;kiss_z = seed | 4; kiss_w = seed | 8; kiss_
arry = 0; }ulong rand_kiss() { kiss_x = kiss_x * 69069 + 1;kiss_y ^= kiss_y <�< 13;kiss_y ^= kiss_y >�> 17; kiss_y ^= kiss_y <�< 5;kiss_k = (kiss_z >�> 2) + (kiss_w >�> 3) + (kiss_
arry >�> 2);kiss_m = kiss_w + kiss_w + kiss_z + kiss_
arry;kiss_z = kiss_w;kiss_w = kiss_m; kiss_
arry = kiss_k >�> 30;return kiss_x + kiss_y + kiss_w;}

8

