
Intrinsic di�culty of an optimisation problem

Maurice Clerc

2013-05-26 DRAFT

1 De�nition

In [2], and in its English version [3], I de�ned the di�culty of a problem as the
probability to �nd a solution just by chance. More formally, let S be a search
space of dimension D, usually a D-rectangle, and let f be a non negative numerical
function de�ned on each point x = (x1, . . . , xD) of S. We try to �nd a point on
which f is minimal, or, at least, acceptable, i.e. smaller than a prede�ned value ε.
Such a point is called a solution, and the set of all solutions is called the acceptable
space A.

Now, if we draw a point at random according to the uniform distribution, what
is the probability that this point is a solution? Clearly, if VS is the volume of the
search space, and VA the volume of the acceptable space, this probability is simply
VA/VS . In practice we do not consider the probability itself, but the opposite of
its logarithm. Therefore, the formula that we use for the di�culty is

δ = − ln

(
VA
VS

)
= ln (VS)− ln (VA) (1.1)

So, we manipulate only small numbers, and if the acceptable space is identical
to the search space, then the di�culty is zero, which is quite conform to the in-
tuition. Sometimes, it is possible, and even easy, if we have an analytical formula
for f , to directly compute it. More often�we can compute a mathematical approx-
imation. But most of the time, the only way is to apply an algorithm that gives
an estimation.

2 Exact and approximate computations

2.1 Discrete functions

An obvious case in which exact computation is possible is for a �nite discrete
search space of size N . If there are n solutions, the �volume� of the acceptable
space is n, and the �volume� of the search space is N. Therefore the di�culty is
simply

δ = ln (N)− ln (n) (2.1)

1

For example, for a combinatorial problem like the Travelling Salesman one with
C cities, if there is just one solution, the di�culty is

δ = ln (C!) (2.2)

Note that this is the intrinsic di�culty, which is not depending on any method
or algorithm that could be used to �nd the solution. It means that the di�culty
of a problem that seems easy (say, for TSP, all cities on a circle) is exactly the
same that the one of a problem that seems quite hard (cities on a complicated
network of roads). From this point of view, there is no di�erence between discrete
problems, combinatorial or not, they are all equivalent: if the size of the search
space is the same, then the di�culty is also the same.

2.2 Continuous functions

Let us consider now a few less obvious cases, taken from the numerical continuous
optimisation. In all cases below, and for simplicity, we consider that the search
space is S = [−a, a]

D
. So, its volume is

VS = (2a)
D

(2.3)

As said, for some functions found in the optimisation literature , the volume
VA of the acceptable space can be exactly computed. Also, there are a bit more
functions for which the function, around the solution point, is equivalent to a poly-
nomial one, and therefore VA can be approximated. To derive the approximations,
I applied the following classical formulae, when u is small

(1 + u)
n ' 1 + nu

cos (u) ' 1− u2

2
eu ' 1 + u

2.2.1 Parabola/Sphere function (exact computation)

f (x) =

D∑
d=1

x2d (2.4)

WhenD = 1, the mathematical name of this function is Parabola, and Paraboloid
for D = 2, but in optimisation literature and for any values of D, it is more often
called Sphere, probably for the isolines indeed are D-spheres. Let us precisely
consider the D-sphere of radius ρ so that ρ2 =

∑D
d=1 x

2
d < ε. Clearly, the accept-

able space is the portion of this D-sphere that is inside the search space. We do
suppose that ε is small enough so that this D-sphere is entirely included in the
search space. Therefore the volume of the acceptable space A is

VA = ε
D
2

π
D
2

Γ
(
D
2 + 1

) (2.5)

2

2.2.2 Schwefel 2.21 (exact computation)

f (x) = max (|xd|) (2.6)

Here the acceptable space is de�ned by the D-sphere of radius 2ε, and therefore
its volume is

VA = (2ε)
D π

D
2

Γ
(
D
2 + 1

) (2.7)

2.2.3 Griewank (approximation)

f (x) =
1

4000

D∑
d=1

x2d −
D∏
d=1

cos

(
xd√
d

)
+ 1 (2.8)

The second order approximation is

D∑
d=1

(
1

4000
+

1

2d

)
x2d (2.9)

which is the formula of a D-ellipsoid. The volume of the acceptable space is
then given by

VA = ε
D
2

π
D
2

Γ
(
D
2 + 1

)
√√√√ D∏
d=1

1
1

4000 + 1
2d

(2.10)

2.2.4 Alpha-D-max function (exact computation)

f (x) = αD max (|xd|) (2.11)

Here the acceptable space is de�ned by the D-cube of side 2ε
αD , and its volume

is therefore

VA =

(
2ε

αD

)D
(2.12)

Note that here the volume decrease as soon as the dimension is greater than

1

2

(
ln (2ε)

ln (α)
− 1

)
(2.13)

It means that when D increases, the di�culty �rst also increases, but then
decreases to zero. For the example below, with ε = 10−10 and α = 0.1, it happens
for D ≥ 5.

3

2.2.5 Rastrigin (approximation)

f (x) =

D∑
d=1

(
x2d + 10 cos (2πxd) + 10

)
(2.14)

The second order approximation is

(
1 + 20π2

) D∑
d=1

x2d

and therefore an approximation of the volume of the acceptable space is the

volume of the D-sphere of radius ρ =
√

ε
1+20π2

VA =

(
ε

1 + 20π2

)D
2 π

D
2

Γ
(
D
2 + 1

) (2.15)

2.2.6 Ackley (approximation)

f (x) = −20e

−0.2
√√√√√√ 1

D

D∑
d=1

x2d


− e

1
D

√√√√√√
D∑
d=1

cos (2πxd)

+ 20 + e (2.16)

The second order approximation is

4r√
D

+ 2π2 r
2

D

where r =

√√√√ D∑
d=1

x2d , and therefore the �rst order one is

4√
D

√√√√ D∑
d=1

x2d

So, an approximation of the volume of its acceptable space is the volume of

the D-sphere of radius ρ = ε
√
D

4

VA =

(
ε
√
D

4

)D
π

D
2

Γ
(
D
2 + 1

) (2.17)

3 Estimation algorithm

When there is no way to exactly compute, or even to mathematically approximate
the volume of the acceptable space, there is still the algorithmic method. In short,
we draw at random a big number of points, and we count how many are solutions.
However this kind of brute force method is not realistic because of the computation
time, so we have to use a more clever one.

4

3.1 Brute force is not a good approach

Let us suppose we know the volume VA of the acceptable space. We draw at
random k points. How big should be k to be almost sure (con�dence level ϕ)
to �nd at least one solution? This is a classical probability exercise. At each
attempt, the probability to �nd a solution is p = VA

VS
. So, the probability to not

�nd a solution after k attempts is (1− p)k. And therefore the probability to indeed

�nd a solution after k attempts is 1− (1− p)k. As we want it at least equal to ϕ,
it means that the answer to our above question is

k ≥ ln (ϕ)

ln
(

1− VA

VS

) (3.1)

Let us consider a simple problem: the Sphere function on [−100, 100]
2
, with

an acceptable error equal to 10−10. According to the formula 2.5, we have VA

VS
=

7.85 × 10−15. With a con�dence not specially high, say 0.9, the formula 3.1 says
that we will have to draw at least 2.92 × 1014 points. And this is just for a 2D
problem. So, unless you have a hypercomputer at hand, a better method has to
be used.

3.2 A more clever method

The proposed algorithm is based on two assumptions:

• there is just one point x∗ on which f reaches its minimum;

• the acceptable space is a connected area (which is therefore �around� x∗).

Moreover, in the current form, it really works only it the acceptable space A can
be included in a D-rectangle whose volume is not �too big� compared to VA. See
5.1 below for hint about how to generalise the algorithm.

As it does not matter where x∗ is, we can suppose, for simplicity, that it is
(0, . . . , 0). As said, and also for simplicity, the search space S is a D-cube. The
idea is to de�ne a test space T that is a D-rectangle ⊗Dd=1 [tmin,d, tmax,d] centred
on x∗. The algorithm is a cyclic one, and each cycle needs Pmax points to draw.
This number is an user de�ned parameter. Here is the description of the method:

At the beginning, the algorithm de�nes each side of T by dichotomy, so that
f ((0, . . . , tmin,d, . . . , 0)) < 2ε < f ((0, . . . , 2tmin,d, . . . , 0)), and the same for tmax,d.

Loop:
Draw Pmax points at random, compute their f values, and count how many

are smaller than ε, say Pacceptable. We have three cases:

• Pacceptable > Pmax/2. It means that T is probably too small. If it is smaller
than the search space, we enlarge it (in practice we double it along each di-
mension), and launch another cycle of Pmax points at random (go to Loop).

5

If it can not be enlarged (already equal to the search space), then the algo-
rithm stops, saying that the di�culty is null.

• Pacceptable is too small (typically smaller than Pmax/100). It means that T is
probably too big, and we reduce it (each side of the D-cube is divided by two),
and then go to Loop. However, in order to avoid any in�nite enlarge/reduce
loop, this can be done only once.

• Pacceptable is neither too big nor too small. Then the estimation of the volume
of the acceptable space is given by

VA '
Pacceptable
Pmax

VT
VS

(3.2)

where VT is the volume of the test space, i.e. TE =

D∏
d=1

(tmax,d − tmin,d). And

the estimation of the di�culty is given by δ = ln (VS) − ln (VA). We will now
see on some examples that this method gives pretty good results by using only a
reasonable number of test points.

4 Examples and comparisons

First, we will compare the results of the algorithm to the ones we have exactly
computed, or approximated. Then we will apply it to some other classical test
functions, particular in order to see how the di�culty increases (or not) with the
dimension.

4.1 Checking the precision

Let us apply our algorithm to the �ve functions for which we have a mathe-
matical formula of the di�culty (even if approximated). The search space is

S = [−100, 100]
D
, and the acceptable error ε = 10−10. The di�culty is esti-

mated for dimensions D from 2 to 15. As we can see on the table 1 �gure 4.1, the
algorithmic estimation is pretty good, for the maximum error is quite small. The
number of test points generated by the algorithm is typically 2 × 106D, which is
perfectly acceptable on any decent laptop.

Table 1: Maximum relative error between algorithmic estimation and ex-
act/approximated di�culty, for dimension D from 2 to 15. S = [−100, 100]

D
,

ε = 10−10.

Sphere 1.2× 10−3

Schwefel 2.21 3.6× 10−5

Griewank 5.7× 10−4

Rastrigin 2.2× 10−4

Ackley 2.7× 10−3

Alpha-D-max 2.5× 10−5

6

Table 2: Intrinsic di�culty of six quasi-real world problems.

Dimension Acceptable error Di�culty

Tripod 2 10−10 56
Compression Spring 3 10−10 71.8

Gear Train 4 10−13 23.3
Pressure Vessel 4 10−5 87.3
Lennard-Jones 15 10−6 145.3

Frequency Modulation 16 10−6 70

4.2 Applying on some problems

As we have seen that the estimation algorithm gives good results, we can now
safely apply it to more functions.

4.2.1 Scalable problems

The six �rst ones are coming from the CEC 2008 competition [1]. They are shifted,
but, as said, it changes nothing for the intrinsic di�culty. Again, the search space
is S = [−100, 100]

D
, and the acceptable error ε = 10−10. When the dimension

increases, and for all of them, the di�culty increases linearly. It means that around
the solution point all these functions have the behaviour of a D-polynom. In other
words, these functions are locally more similar that one could think.

Figure 4.2: Evolution of the intrinsic di�culty with the dimension. The CEC 2008
problems have all the same local behaviour around the solution point.

7

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Algorithmic estimation of the di�culty vs exact or approximated value.

8

4.2.2 Quasi-real world problems

4.3 Comparing with an optimisation method

If we apply a reasonably good optimisation algorithm on some problems, is there
a relationship between the success rate and the intrinsic di�culty? As we can
see on the Table 3 and the Figure 4.3, the answer is negative. I have used APS
(Adaptive Population Based Simplex [4]) on the six CEC 2008 problems we have
seen above, in 10 dimensions. Clearly, APS (like in fact any �good� algorithms)
takes advantage of the structure of the landscape of the function. No matter the
intrinsic di�culty is, it easily �nds the solution when the problem is unimodal, or
separable (or both!).

For Griewank, which is neither unimodal nor separable, it takes advantage of
the fact that the landscape has a global unimodal shape, just �perturbed� by a
lot of small local minimums, from which it can easily escape (and the higher D is,
the more it is easy). On the contrary, for Rosenbrock, whose intrinsic di�culty is
smaller than the one of, say, Ackley, the global shape is quite deceptive.

Table 3: Intrinsic-di�culty, and success rate with APS.

CEC 2008 problem Di�culty Success rate (%)

Rastrigin separable 80.7 98
Sphere unimodal separable 116.2 100

Griewank 156.7 82
Rosenbrock 215.9 2
Ackley separable 354.9 100

Schwefel 2.21 unimodal 414.5 100

Figure 4.3: Success rate (with APS) vs Intrinsic di�culty. There is no relation-
ship, because the optimisation algorithm takes advantage of the structure of the
landscape, as the intrinsic di�culty does not.

9

5 When it does not work ...

On some problems, the above estimation method can not work, and the math-
ematical computation is far more di�cult, because the acceptable space is not
more or less �around� the solution point. Let us consider for example the following
Product function (Schwefel 2.21):

Search space S = [0, a]
D
.

f (x) =

D∏
d=1

xd (5.1)

Each hyperplan for which xd = 0, is an in�nite set of solutions. Therefore the
acceptable space looks like a �star� with long thin rays that go through the whole
search space. It is still connected, but can not be any more included in a single
small D-rectangle.

5.1 ... and how to improve it

Let us consider the case D = 2. In this case, the volume of the acceptable space
is easy to compute

VA = ε+

aˆ
ε
a

ε
udu

ε+ ε (2 ln (a)− ln (ε))

(5.2)

The di�culty is then δ = ln
(
a2
)
− ln (VA).

As we can see on the �gure 5.1, the acceptable space can be �covered� by a
�nite number of D-rectangles, and, therefore, the same (generalised) estimation
approach could be applied. We can try to code an algorithm that does that,
i.e. that can cover any connected acceptable space thanks to D-rectangles, and
test it on some problems like the above one, for which the result can be directly
computed. A future work?

10

Figure 5.1: Product function (a = 10, ε = 1). Covering of the acceptable space
by D-rectangles. The open question is �How to do it thanks to an algorithm?�

6 Appendix

6.1 More detailed results

11

Schwefel 2.21 Ackley Rosenbrock Griewank
D approxim. approxim. approxim.
2 55.260049 55.2620422319 55.302678 55.3041796824 37.012832 35.020332 35.0223036325
3 82.893196 82.8930633478 82.631236 82.632754732 57.151654 52.472509 52.4424935642
4 110.522579 110.5240844637 109.913614 109.9152121843 76.880092 69.856569 69.8428734626
5 138.155248 138.1551055796 137.169684 137.1706959787 96.546279 87.23865 87.2312931358
6 165.786622 165.7861266956 164.408169 164.4084616505 116.22078 104.622266 104.6117607901
7 193.417895 193.4171478115 191.628667 191.6336950696 136.016977 121.99633 121.9865935294
8 221.045209 221.0481689274 218.842511 218.8495951156 155.88727 139.359037 139.3572497962
9 248.677717 248.6791900434 246.091253 246.0582742531 175.848609 156.724491 156.724706365
10 276.311145 276.3102111593 273.22007 273.2612005928 195.934864 174.100823 174.089649132
11 303.947487 303.9412322752 300.454166 300.4594358059 215.879029 191.452433 191.4525780453
12 331.575962 331.5722533911 327.539561 327.6537724912 235.939732 208.804095 208.813868676
13 359.197231 359.2032745071 354.873567 354.8448180227 255.976937 226.114565 226.1738102726
14 386.834834 386.834295623 383.049241 382.0330480947 276.4605 243.518182 243.5326303065
15 414.46932 414.4653167389 408.994412 409.2188422215 296.582691 260.946383 260.8905108771

Sphere Rastrigin Alpha-D-max
D exact approxim. exact
2 32.478106 32.4777557772 31.77626 31.7765365452 46.051832 46.0517018599
3 49.060892 49.0013165363 47.948867 47.9494876883 62.170141 62.1697975108
4 65.717632 65.6486587349 64.387733 64.246220271 73.682959 73.6827229758
5 82.45845 82.3953630453 80.739574 80.6423149654 80.590167 80.5904782548
6 99.27929 99.2250268008 97.179972 97.1213691049 82.890956 82.8930633478
7 116.162388 116.125881791 113.719736 113.6716144791 80.590816 80.5904782548
8 133.105588 133.0890769391 130.313968 130.2842000112 73.683374 73.6827229758
9 150.123693 150.107714965 146.975234 146.9522284211 62.169415 62.1697975108
10 167.192559 167.1762706287 163.686877 163.6701744688 46.051981 46.0517018599
11 184.307793 184.2902188344 180.438309 180.4335130585 25.328462 25.3284360229
12 201.456385 201.4457858751 197.221674 197.2384704833 0 0
13 218.598244 218.6397767885 214.059771 214.0818517806 0 0
14 235.884914 235.8694518014 230.939306 230.9609171776 0 0
15 253.207271 253.1324355862 247.851842 247.8732913464 0 0

References

[1] CEC. Congress on Evolutionary Computation Bench-
marks,http://www3.ntu.edu.sg/home/epnsugan/.

[2] Maurice Clerc. L'optimisation par essaims particulaires. Versions

paramétriques et adaptatives. Hermés Science, 2005.

[3] Maurice Clerc. Particle Swarm Optimization. ISTE (International Scienti�c
and Technical Encyclopedia), 2006.

12

[4] Mahamed G. H. Omran and Maurice Clerc. An adaptive population-based
simplex method for continuous optimization. 2013 (submitted).

13

