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The questionable 
balance mantra
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A classical claim
to carefully examine

“This iterative optimiser is efficient 
 for it ensures a good balance
 between exploitation and exploration“ ?

??

randomness
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Exploitation
D-sphere based

- radius = k*(distance to the nearest one)
- Needs to save all sampled points. 

- Sampling: uniform, Gaussian, any local search.

Nearest point

to simplify
k=1
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Exploitation
D-cube based

- 1/2 side or diagonal < distance to the nearest one
- Needs to save all sampled points 

- Sampling: uniform, Gaussian, any local search
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D-cube vs D-sphere (1)

Circumscribed D-cubeInscribed D-cube

Nearest point (k=1)
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D-cube vs D-sphere (2)
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Exploration

D-spheres

Logical negation

D-cubes

Exploration domains
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How and where
 to explore?

Ten exploitation domains

?
?

?

?
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Random exploration

Particular case D=1

At random, until not in an exploitation domain

Forced exploration point

Bingo!
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No Man's Land
Far from already sampled points
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SunnySpell technique

Normalised search space [0,1]D

Sampled points:
{X 1 , X 2 , ... , X N }

Looking for X=(x1 , x2 , ... , xD)
minimising

1

mind=1
D min (xd

β ,(1−xd)
β
)¿

+
1

min‖X*−X d‖

Repulsion with respect 
to the“walls” Repulsion with respect 

to sampled points

arbitrary β
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SunnySpell landscape

Potential function over 10 sampled points

Even a local minimum 
is acceptable

Use a simple 
sub-optimisation

 β = 0.1



SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

13

Extended search space

Can be on the frontier

Back to the real search 
space. Different moves 
may be needed.

Or, better: assign a high 
value, increasing function 
of the distance to the 
centre of the search 
space.
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Why “SunnySpell”?

Exploration domain
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Balance profile

number of exploitation points (t)
number of exploration points (t)

(t)=

tinitialisation

intuitive evolution?

Ω(t )=
nexploit (t)

t−nexploit (t)
Ω(t )=

nexploit (t)

t−nexploit (t)

If t is the number of evaluationsIf t is the number of evaluations

1

2
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Two logics

1)  looking close to them, for there is …
probably an even better not too far away.

2)  looking elsewhere, now you already have a …
good solution.

The more you find good positions, the more it is 
worth spending time ...

t
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Three experiments

Evaluations

Obtained profile
Desired profile

APS

SPSO 2011

APS

SPSO 2011

Generated profiles Generated profiles

Random 
search

Explo2 Two good 
algorithms
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Random search profiles
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Explo2
Initialisation

Exploitation

Exploration

balance(t) > 
desired balance(t) _
    
     ?

Yes

No

tex
p
lo
it
at
io
n/
ex
p
lo
ra
ti
on

Desired profile
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Explo2 with 
predefined profile

Perfect balance

Evaluations

Obtained profile
Desired profile

Obtained profile= mean on 100 runs
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A simple example
Alpine 2D

minimum 0 on (1,2)

f (x )=∑
d=1

D

|(xd−d )sin(xd−d )|+0.1|xd−d|
See Appendix
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Best profile?
C

um
u
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e
 p
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ty

Results on 100 runs

0.5

1.4

Better less exploitation than exploration

Comparing CDFs

0.5
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Adaptive Population-
based Simplex

http://aps-optim.info/http://aps-optim.info/

Expansion

Contraction

Initialisation

Stagnation detection
Selection
Partial restart

Stagnation detection
Selection
Partial restart

Local search

if not enough
 improvement

if not enough
 improvement

Optional (not used here)
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APS 
+ balance observer

Adaptive Population-Based Simplex

Stagnation detection

Alpine 2D



SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

25

SPSO 2011
+ balance observer

exploitation/exploration 
=> 1.5 

http://particleswarm.info/http://particleswarm.info/
Alpine 2D
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 CDF vs Profile
(Alpine 2D)
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 is the worst strategy 

exploitation
 > exploration exploitation 

<< exploration

exploitation = 
exploration

Best
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Explo2
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Another example
(FM 6D)

CEC 2011 Function 1: Frequency-Modulated Sound Waves

y (t )=a1sin (ω1)t θ+a2sin (ω2)t θ+a3 sin(ω3) t θ
y0(t )=sin (5)t θ+1.5 sin(4.8)t θ+2 sin(4.9)t θ

θ= π
50

x=(a1 ,ω1 , a2 ,ω2 ,a2 ,ω3)∈[−6.4 ,6 .35 ]6

f (x )=∑
t=0

100

( y (t)− y 0(t ))
2f (x )=∑

t=0

100

( y (t)− y 0(t ))
2

solution=(1, 5, 1.5, 4.8, 2, 4.9)
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Difficulty
“This problem is a highly complex multimodal one having strong epistasis”

Swagatam Das and Ponnuthurai N. Suganthan, Problem Definitions and Evaluation 
Criteria for CEC 2011 Competition

“This problem is a highly complex multimodal one having strong epistasis”

Swagatam Das and Ponnuthurai N. Suganthan, Problem Definitions and Evaluation 
Criteria for CEC 2011 Competition

See Appendix

narrow attraction basin

A typical 3D (normalised) cross section
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Profile and evolution

Far more explorations 
than exploitations still 
improve the search

APS
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         Zoom
Evaluations Best value

2600 1.382402E-05

2800 2.750586E-08

3000 2.750586E-08

3200 2.750586E-08

3400 2.750586E-08

3600 2.750586E-08

3800 1.90227E-08

4000 1.331773E-08

4200 1.331773E-08

4400 1.189554E-08

4600 1.189554E-08

4800 1.168904E-08

5000 1.168904E-08

5200 1.075004E-08

5400 1.075004E-08

5600 9.80309E-09

5800 9.80309E-09

6000 9.740409E-09

almost no more 
exploitation, but 
still improving
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CDF vs Profile
(FM 6D)
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Two profiles with 
Explo2 for FM 6D
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Using a profile similar to the 
one generated by APS is not a 
good  idea

CFDs
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So, please

“This iterative optimiser is efficient 
 for it ensures a good balance
 between exploitation and exploration“

Prove Prove

Define Define

Define and prove
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Profile coach?

“You want to exploit but:
-  your ratio is already high,
and 
-your efficiency is low.

So you should explore instead”.

“You want to exploit but:
-  your ratio is already high,
and 
-your efficiency is low.

So you should explore instead”.

Balance >> 1

200

Best result vs Evaluation

Adaptation



SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

35

Driving balance by 
fuzzy logic?

0.50
Low Medium High

Examples of possible rules:

If efficiency is Low AND ratio is High then Explore

If efficiency is Medium AND ratio is Medium then Explore or Exploit (flip a 
coin)

If efficiency is High AND ratio is Medium then keep the same strategy

Examples of possible rules:

If efficiency is Low AND ratio is High then Explore

If efficiency is Medium AND ratio is Medium then Explore or Exploit (flip a 
coin)

If efficiency is High AND ratio is Medium then keep the same strategy

It supposes a numerical evaluation of the efficiency, or of 
its evolution, on [0,1]. Not that easy

1
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A table of possible 
fuzzy rules

Low Medium High

High explore explore or 
exploit 
(flip a 
coin)

exploit

Medium switch to 
the other 
strategy

flip a coin
keep the 
same 
strategy

Low exploit
flip a coin

explore

Logic: I already have 
good solutions, so I can 
look elsewhere

exploitation
exploration

Efficiency
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A little advertising

Mainly
chapters 7 and 8

At least the discussion
about p-values



SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

38

Thank you for your 
attention!



SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

39

Any question?

Please, speak slowly, clearly 
                 and LOUDLY!
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Appendix

For maths addictFor normal guys

* Is Exploration always possible?
* CDF, Qu’es acò?

* Nearer is better

* Difficulty measure

* Success proba vs numberb of runs

* Difficulty vs Dimension

* Counting exploitation points

* Stochastic geometry, a simple example
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Is exploration always 
possible? 

Adding an exploitation 
point recreates “free space”

No way

D-cubes
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CDF, Qu'es acò?
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Cumulative Distribution 
Functions (1)

No doubt, Optimiser 1 is better
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100 runs

Optimiser 2: for 50 
runs, the final error 
is smaller than 0.28

Optimiser 1: for 50 
runs, the final error 
is smaller than 0.18
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Cumulative Distribution 
Functions (2)
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back to main slide

If you want results smaller than 0.2  
Optimiser 1 is better (probability 0.55).
The contrary if you are less demanding.

median is not 
pertinent to draw 
any conclusion
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Nearer is Better

f xb f xw 

z

z '

xb

xw

Kind of spatial autocorrelationKind of spatial autocorrelation

Improvement is more 
probable 
HERE than HERE
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Difficulty measures

CEC 2011
Code Name Dimension Difficulty

1 Parameter 
Estimation for 
Frequency 
Modulated Sound 
Waves

6 0.458

2 Lennard-Jones 
Potential Problem

30 0.973

3 The Bifunctional 
Catalyst Blend 
Optimal Control 
Problem

1 0.046

7 Spread Spectrum 
Radar Polyphase 
Code Design

20 0.545

δ¬NisB
*

depending on 
the “Nearer 
is Better” 
probability

back to main slide
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Difficulty vs Dimension
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GriewankNot linear

Not 
increasing

Decreasing
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Probability of success 
vs Number of runs

Probability p 
for one run

1−(1− p)n
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Stochastic geometry
(Warming up) 1/2

0 1a b

random points

proba (|b−a|≥
1
2
)=

2 ∫
a=0

1
2

∫
b=a+

1
2

1

(b−a)

2 ∫
a=0

1

∫
b=a

1

(b−a)

=
1
4

acceptable intervals

all intervals
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Stochastic geometry
(Warming up) 2/2

∫
a=0

1

∫
b=a

1

(b−a)

all intervals

acceptable intervals

∫
a=0

1
2

∫
b=a+

1
2

1

(b−a)

0 1/2 1
0

1/2

1
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Good points

1 = exploitation 

2 = exploration

3 = questionable
1 

2

3

3

1

3

33
3

1

3

In practice, many optimisers exploit only around one of the k best 
positions found.

With explicit exploitation, different k values modify neither the number of 
exploitation points nor the balance, but do modify the efficiency.

With implicit exploitation, the balance may be modified but not the 
efficiency (for the number of exploitation points is not used to define the 
strategy).

Counting 
exploitation points 

(1/2)
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Counting 
exploitation points 

(2/2)
Alpine 2D

Random search

Counting with 
only the best 
exploitation 
domain

Counting with 
all exploitation 
domains

Counting with 
all exploitation 
domains

Counting with 
only the best 
exploitation 
domain

SPSO 2011APS

Counting with 
all exploitation 
domains

Counting with 
only the best 
exploitation 
domain

APS
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09:42:08

The questionable 
balance mantra

Good morning!
We are here in the context of iterative stochastic 
optimisers. Such algorithms have to sample points inside 
the search space, but where?
 
Actually the exploration exploitation trade-off is a dilemma 
we frequently face in choosing between options. Should 
you choose what you know and get something close to 
what you expect (‘exploit’) or choose something you aren’t 
sure about and possibly learn more (‘explore’)? 

This trade-off is sometimes called intensification-
diversification, but no matter the name: in many papers 
about optimisation you can read a claim like THIS ONE.
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09:42:08

A classical claim
to carefully examine

“This iterative optimiser is efficient 
 for it ensures a good balance
 between exploitation and exploration“ ?

??

randomness

 I call it a mantra for it is almost never supported by clear 
definitions and convincing proofs, at least experimental 
ones.
Ensuring efficiency is not the topic of this talk, so I will say 
just a few words about it.
 The point is that comparing two stochastic optimisers can 
be very tricky, precisely because the use of randomness. 
Classical tools like medians or p-values can easily lead to 
wrong conclusions.

Today I would insist on what could be measurable 
definitions of exploitation, exploration and balance. Actually 
even the word “good” has to be clarified.
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09:42:08

Exploitation
D-sphere based

- radius = k*(distance to the nearest one)
- Needs to save all sampled points. 

- Sampling: uniform, Gaussian, any local search.

Nearest point

to simplify
k=1

Here we have a two dimensions search space in which 11 
points are already sampled.
Now we want to exploit around THIS point.
To precisely define what “around” means, I suggest two 
methods: by using a DISC (more generally a hypersphere) 
or a square (more generally a hypercube).
Note that the search space has to be normalised.

The RADIUS of the sphere is given by the distance to the 
nearest other point. Note that to do that you may have to 
keep all sampled points. Many optimisers do not.

To avoid any arbitrary parameter,  THIS coefficient may be 
simply set to 1. it doesn’t make much difference, except at 
the very beginning.

And then a new point is sampled inside this exploitation 
domain, by using any method.
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09:42:08

Exploitation
D-cube based

- 1/2 side or diagonal < distance to the nearest one
- Needs to save all sampled points 

- Sampling: uniform, Gaussian, any local search

We can of course easily do something similar by using 
hypercubes.
Again you can use any local search method inside the 
exploitation domain, for example a greedy one.

There are two main ways to use the distance to the nearest 
point to define the size of the cube: by using the diagonal 
or by using the side.
The two approaches are very similar if the dimension is 
low.

But not any more in high dimension. Let’s quickly see why.
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09:42:08

D-cube vs D-sphere (1)

Circumscribed D-cubeInscribed D-cube

Nearest point (k=1)

Obviously, in dimension 1 there is no difference at all.
In dimension 2, as on this figure, the difference is not that 
important.
By using the diagonal, the spherical exploitation domain is 
slightly bigger than the cubical one.
By using the side, this is the contrary.
Or, said differently:
- if you use the distance to the nearest point to define the 
diagonal, then the sphere contains the cube
- if you use it to define the side, the cube contains the 
sphere.
But the point is that the evolution of the ratio between the 
two volumes is not the same when the dimension 
increases.
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09:42:08

D-cube vs D-sphere (2)
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This is of course a quite boring technical point, and I do not 
insist on it.
In one case the evolution is not monotonic, and dimensions 
 around 5 are critical.

Therefore,  if you define a brand new algorithm with explicit 
exploitation just be careful. What kind of exploitation you 
use, and for what kind of problems.

Note that in practice one doesn’t consider all possible 
exploitation domains. It doesn’t modify the conclusions we 
will see, but in case you are interested, I  added a few extra-
slides at the end of this presentation.

Now, what about exploration?



  

 

SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

7

09:42:08

Exploration

D-spheres

Logical negation

D-cubes

Exploration domains

As soon as exploitation is defined, defining then exploration 
is theoretically very easy: just the logical negation.
Either by using spherical exploitation domains, or cubical 
ones.

I said “theoretically very easy”, but what about in practice?
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09:42:08

How and where
 to explore?

Ten exploitation domains

?
?

?

?

Here you have some exploitation domains. How to sample 
a point that is not in any of them?

Think about it for a second. How would YOU do that?

Let’s consider here just two methods:
- at random
- or, more sophisticated, by using a No Man’s Land search
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09:42:08

Random exploration

Particular case D=1

At random, until not in an exploitation domain

Forced exploration point

Bingo!

The random method is simply a loop:
- sample at random, according to an uniform distribution
- check if the point is in an exploitation domain
- if so, repeat.

In low dimension it can take a long time, for the exploitation 
domains can cover a large part of the search space.

Actually, it may be impossible to find a real exploration 
point, like HERE in dimension 1.

In that case you have to cheat a bit, for example by 
selecting the middle of the largest interval between two 
sampled points.
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09:42:08

No Man's Land
Far from already sampled points

Intuitively it seems interesting to sample as far as possible 
of already sampled points.

However, if you do that, the new point may be too often just 
a corner of the search space or on a side.

So you have to use a trick to avoid this phenomenon.

But let’s see first more precisely how such a method can 
be formalised.
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09:42:08

SunnySpell technique

Normalised search space [0,1]D

Sampled points:
{X1 , X 2 , ... , X N }

Looking for X=(x1 , x2 , ... , xD)
minimising

1

mind=1
D min(xd

β ,(1−xd)
β
)¿

+ 1

min‖X *−X d‖

Repulsion with respect 
to the“walls” Repulsion with respect 

to sampled points

arbitrary β

Of course the formulae given here are quite arbitrary.
You can easily find other ones, for example by analogy with 
electrical potentials.

But the point is that using more “realistic” potentials, if I 
dare say, is not necessarily a good idea, for it can be very 
difficult to find the minimum. Think, for example, at the 
famous Lennard-Jones problem, in which you have to 
minimise the total energy of a cluster of atoms.

Note that the parameter beta is here just to increase the 
height of the peaks in the landscape of the sub-problem.

Let’s see how this landscape looks like.
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09:42:08

SunnySpell landscape

Potential function over 10 sampled points

Even a local minimum 
is acceptable

Use a simple 
sub-optimisation

 β = 0.1

Here is a typical landscape for a two dimensions problem. 
By construction, the peaks are located on the known 
positions, for they are the places to avoid.

A point near to the global minimum or even near to a local 
minimum will be an acceptable exploration point.

So the sub-optimisation can perfectly be a simple one, with 
just a few iterations.
Actually you even can use a recursive method.

Now, what about the trick I mentioned a few minutes ago?
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09:42:08

Extended search space

Can be on the frontier

Back to the real search 
space. Different moves 
may be needed.

Or, better: assign a high 
value, increasing function 
of the distance to the 
centre of the search 
space.

If you apply the SunnySpell method, or a similar one based 
on repulsive potentials on the real search space, you may 
never sample a point on the frontier .
For some problems it may be a drawback for, precisely, the 
solution point may be on this frontier.

A simple workaround is to use a slightly extended search 
space. And if a new position is sampled outside the real 
one,  you can assign an artificial high value, or move the 
point.

If you move the point, you have to check if the modified 
position is not in an exploitation domain. Because of the 
shape of the potential landscape, it very rarely happens, 
probably never, but, if so, you have to try another moving 
method, in practice by using a bit of randomness.
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Why “SunnySpell”?

Exploration domain

Just for fun. Why this name “SunnySpell”?
If you imagine the exploitation domains are clouds, then 
the exploration domain is the remaining clear sky.

OK, now we have precise definitions of exploitation and 
exploration, we can easily define the concept of balance.
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Balance profile

number of exploitation points (t)
number of exploration points (t)

(t)=

tinitialisation

intuitive evolution?

Ω(t )=
nexploit (t)

t−nexploit (t)
Ω(t )=

nexploit (t)

t−nexploit (t)

If t is the number of evaluationsIf t is the number of evaluations

1

2

We can look at the evolution of THIS ratio during a run.
Intuitively, during the initialisation phase of a population-
based algorithm, there is no exploitation point.

Note that, if the initialisation is at random, this may be not 
completely true. Particularly in low dimension, a random 
point can be inside the exploitation domain of a previous 
sampled one.

Let’s try to guess what could be a typical profile.

A first reasoning is to say that the number of exploitation 
points is more or less the same at each iteration. Hence 
the curve 1, if the population size is constant.

Another reasoning is to say that there is more and more 
exploitation at each iteration. Hence the curve 2. 
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Two logics

1)  looking close to them, for there is …
probably an even better not too far away.

2)  looking elsewhere, now you already have a …
good solution.

The more you find good positions, the more it is 
worth spending time ...

t

A variant of this second reasoning can be reworded like 
THIS.

However, under the same condition, that is more and more 
exploitation points, another logic can be considered.

After all, if you already found good points, you may say 
“OK, now I have something acceptable, why not looking 
completely elsewhere? “

Of course, it depends on your budget, in practice the 
maximum number of evaluations. If you did not spend it 
entirely, the second logic is tempting.
In that case the profile may be something like THAT.
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Three experiments

Evaluations

Obtained profile
Desired profile

APS

SPSO 2011

APS

SPSO 2011

Generated profiles Generated profiles

Random 
search

Explo2 Two good 
algorithms

To investigate the relationship between profile and 
efficiency I performed three kinds of experiments.

The first one is to consider the pure random search.
Actually it was just to test my code, for in that case the 
curve can be mathematically found.

The second one is to design a simple algorithm that has to 
follow a predefined profile. And to try different profiles, of 
course.

The third one is to add a profile observer to some good 
algorithms, to plot the generated profiles, and to try to 
understand them.
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Random search profiles

2D 6D
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For the random search, the generated profile is of course 
not depending on the landscape of the problem, only on its 
dimension.

As you can see, the profile tends to a constant ratio. 
Actually, this could be proved in the context of stochastic 
geometry. And the limit is a DECREASING function of the 
dimension.

More generally, algorithms that make intensive use of 
randomness usually generate similar profiles.

Please, keep in mind this kind of shape, for further 
comparisons with some sophisticated algorithms.
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Explo2
Initialisation

Exploitation

Exploration

balance(t) > 
desired balance(t) _
    
     ?

Yes

No

tex
p
lo
it
at
io
n/
ex
p
lo
ra
ti
on

Desired profile

As said, the second set of experiments is based on an ad 
hoc optimiser, called Explo 2. 

You give it a profile, and it just tries to conform to it.
Each time it has to sample a new point, the question is 
“Should I exploit, or should I explore”.
The decision is only depending on the comparison between 
the current generated profile and the predefined one.

Note that in this algorithm “to exploit” means “sampling 
inside the exploitation domain of the best current position”.
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Explo2 with 
predefined profile

Perfect balance

Evaluations

Obtained profile
Desired profile

Obtained profile= mean on 100 runs

So, an output of the algorithm is of course the best position 
found and its value, but another one is a plot like THIS one.

Here the user wanted a perfect balance equal to 1 after 
initialisation.

The algorithm could not exactly do that, because of the big 
DISCONTINUITY, but it very quickly succeeds to reach the 
value 1 and to maintain it.

Now we can try to compare the influence of several 
predefined profiles, first on a simple example.
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A simple example
Alpine 2D

minimum 0 on (1,2)

f (x )=∑
d=1

D

|(xd−d)sin(xd−d)|+0.1|xd−d|
See Appendix

This problem is multimodal but separable. At least, the 
solution point is not on a particular position, contrarily to 
some other test problems for which it is on the centre of the 
search space, which is not acceptable for fair comparisons.

I tried many predefined profiles and to compare the results 
I used the CDF method, as the classical ones with mean, 
median, and p-values may be not discriminant.

CDF, hmm, do I see a little perplexity on some faces?

I think we have time to quickly look at the appendix, and 
then back.
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Best profile?

C
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Results on 100 runs

0.5

1.4

Better less exploitation than exploration

Comparing CDFs

0.5

So, on our Alpine problem with Explo 2, I tried some 
profiles, and plotted the resulting CDFs for 1000 
evaluations.

All profiles tend to a limit, like for the random search, but 
for the two best ones the limit is 0.5, as for the worst the 
limit is greater than 1.

One of the CDF is for a perfect balance, with a limit equal 
to 1, and it is not specially good.

So it is tempting to conclude that a ratio around 0.5 is a 
good choice.

However the third set of experiments with good algorithms 
shows that is not always true.  Let’s see that.



  

 

SocPros 2019, Liverpool Maurice.Clerc@WriteMe.com

23

09:42:09

Adaptive Population-
based Simplex

http://aps-optim.info/http://aps-optim.info/

Expansion

Contraction

Initialisation

Stagnation detection
Selection
Partial restart

Stagnation detection
Selection
Partial restart

Local search

if not enough
 improvement

if not enough
 improvement

Optional (not used here)

Now I run a published algorithm, to which I just added a 
few instructions that count the number of points that are 
sampled inside exploitation domains of previous ones, at 
each time step.

This optimiser is of course more sophisticated than Explo 2 
and, in particular, it can detect stagnation in a probabilistic 
way.

As a result the observed profile on the same Alpine 
problem is completely different.
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APS 
+ balance observer

Adaptive Population-Based Simplex

Stagnation detection

Alpine 2D

Here it is.
Just after each stagnation detection, the algorithm mainly 
explores and, therefore, the profile is decreasing.

This is not really the case with an older optimiser, a PSO 
based one.
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SPSO 2011
+ balance observer

exploitation/exploration 
=> 1.5 

http://particleswarm.info/http://particleswarm.info/
Alpine 2D

Particle Swarm Optimisation is well known, so I do not give 
here its flow chart.

Let’s look at the generated profile. Now the profile is 
increasing to a limit, except just after initialisation.
Do you remember the profile with random search? This 
one is very similar.

Does it mean that SPSO is not better than random search?
Not at all, fortunately, as we can see, again, by plotting the 
CDFs.
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 CDF vs Profile
(Alpine 2D)
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 is the worst strategy 
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exploitation = 
exploration

Best

SPSO 2011 APS

Explo2

1.5

1

On our simple problem, the PSO based algorithm is  better 
than APS. And of course both are better than our 
rudimentary Explo 2. 

So, does it mean now that good algorithms generate 
increasing profiles tending to a limit greater than 1?

Unfortunately, it would be too good to be true.

To see that, we can now consider a more difficult problem.
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Another example
(FM 6D)

CEC 2011 Function 1: Frequency-Modulated Sound Waves

y (t )=a1sin (ω1)t θ+a2sin (ω2)t θ+a3 sin(ω3) t θ
y0(t )=sin (5)t θ+1.5 sin(4.8)t θ+2 sin(4.9)t θ

θ= π
50

x=(a1 ,ω1 , a2 ,ω2 ,a2 ,ω3)∈[−6.4 ,6.35 ]6

f (x )=∑
t=0

100

( y (t)− y 0(t ))
2f (x )=∑

t=0

100

( y (t)− y 0(t ))
2

solution=(1, 5, 1.5, 4.8, 2, 4.9)

This is a test problem largely used. Just of dimension 6, but 
nevertheless quite difficult.

Note that by looking at the formulae the solution is obvious, 
but an iterative algorithm is too stupid to see it.
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Difficulty
“This problem is a highly complex multimodal one having strong epistasis”

Swagatam Das and Ponnuthurai N. Suganthan, Problem Definitions and Evaluation 
Criteria for CEC 2011 Competition

“This problem is a highly complex multimodal one having strong epistasis”

Swagatam Das and Ponnuthurai N. Suganthan, Problem Definitions and Evaluation 
Criteria for CEC 2011 Competition

See Appendix

narrow attraction basin

A typical 3D (normalised) cross section

I do not know if you can imagine a 7 dimensions space, but 
I can not.
However it is possible to plot cross sections. They suggest 
that the solution is on the floor of a narrow basin.

I ran 100 times APS and SPSO, with a budget of 6000 
evaluations for each run.

Why 6000? Because with this budget, APS finds a pretty 
good solution about 10 times more often than SPSO, so 
comparison is easy.

(Do we have time to say a few words about difficulty?)
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Profile and evolution

Far more explorations 
than exploitations still 
improve the search

APS

Again APS generates a decreasing profile, meaning it 
performs more and more exploration than exploitation.

Moreover, with this strategy, and as already said, APS 
continuously improves the best solution found, and the final 
error is very small.
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         Zoom
Evaluations Best value

2600 1.382402E-05

2800 2.750586E-08

3000 2.750586E-08

3200 2.750586E-08

3400 2.750586E-08

3600 2.750586E-08

3800 1.90227E-08

4000 1.331773E-08

4200 1.331773E-08

4400 1.189554E-08

4600 1.189554E-08

4800 1.168904E-08

5000 1.168904E-08

5200 1.075004E-08

5400 1.075004E-08

5600 9.80309E-09

5800 9.80309E-09

6000 9.740409E-09

almost no more 
exploitation, but 
still improving

Actually we can see it more clearly on this slide, which 
shows the decreasing error values found after 2000 
evaluations and more.
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CDF vs Profile
(FM 6D)
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So, if we compare the CDFs for this difficult 6 dimensions 
problem, now APS is the best optimiser.

One may think that the generated profile looks a bit 
strange, but this is precisely for the problem is difficult. As 
the algorithm is adaptive, it largely increases the number of 
explorations in order to cope with this difficulty.

So, in such a case, trying to keep a “good balance” 
between exploitation and exploration would be inefficient.

And of course, again, Explo 2 is largely the worst, for it 
never finds the solution, even by trying different predefined 
profiles.
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Two profiles with 
Explo2 for FM 6D

Explo2, pop. 90
FM 6D
profile 111
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Decreasing profile

Using a profile similar to the 
one generated by APS is not a 
good  idea

CFDs

For example one could give to Explo 2 a predefined profile 
very similar to the one generated by APS,  that is quickly 
decreasing.

But in fact it is not the best choice, as you can see on THIS 
figure.

Actually, it confirms that the balance between exploration 
and exploitation is not a reliable indicator of the efficiency 
of an optimiser.
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So, please

“This iterative optimiser is efficient 
 for it ensures a good balance
 between exploitation and exploration“

Prove Prove

Define Define

Define and prove

Finally, the main conclusion of all these experiments is that 
you have to be careful with the claim we have seen at the 
beginning of this talk.

If you read such a claim or, worse, if you are tempted to 
write one, be sure exploitation and exploration are 
rigorously defined.

Be sure to rigorously define what “good balance” means, 
and prove that the algorithm indeed ensures it.

And last but not least, be sure that the efficiency is well 
proved, at least statistically.

Note a side effect of this study: it suggests possible ways 
to improve existing optimisers or even to design new ones.
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Profile coach?

“You want to exploit but:
-  your ratio is already high,
and 
-your efficiency is low.

So you should explore instead”.

“You want to exploit but:
-  your ratio is already high,
and 
-your efficiency is low.

So you should explore instead”.

Balance >> 1

200

Best result vs Evaluation

Adaptation

Adaptive optimisers are not new.
For example, in APS, there is a rule saying “If there is 
probably a stagnation, then perform a partial restart of the 
worst agents”.

A similar rule, based on the generated profile, could be 
used.
Note the terms, High, and Low.
This is typically something that could be formalised by 
fuzzy sets.
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Driving balance by 
fuzzy logic?

0.50
Low Medium High

Examples of possible rules:

If efficiency is Low AND ratio is High then Explore

If efficiency is Medium AND ratio is Medium then Explore or Exploit (flip a 
coin)

If efficiency is High AND ratio is Medium then keep the same strategy

Examples of possible rules:

If efficiency is Low AND ratio is High then Explore

If efficiency is Medium AND ratio is Medium then Explore or Exploit (flip a 
coin)

If efficiency is High AND ratio is Medium then keep the same strategy

It supposes a numerical evaluation of the efficiency, or of 
its evolution, on [0,1]. Not that easy

1

As usual you can define fuzzy sets for the three terms Low, 
Medium and High.

The main difficulty is to define the efficiency. Actually an 
interesting approach could be a definition based on the 
evolution of the best solution.
Then High would mean “rapidly decreasing”, and so on.

To implement such a fuzzy approach, we need to build a 
complete table of the nine possible cases. 
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A table of possible 
fuzzy rules

Low Medium High

High explore explore or 
exploit 
(flip a 
coin)

exploit

Medium switch to 
the other 
strategy

flip a coin
keep the 
same 
strategy

Low exploit
flip a coin

explore

Logic: I already have 
good solutions, so I can 
look elsewhere

exploitation
exploration

Efficiency

Here is such a table. 
Of course other rules are perfectly possible, but discussing 
them is out of the scope of this talk.

So, before closing, just a last slide with a little advertising. 
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A little advertising

Clerc, Maurice. Iterative Optimizers 
- Difficulty Measures and 
Benchmarks. Wiley, 2019.

Mainly
chapters 7 and 8

Ellenberg, Jordan (2014). How Not To 
Be Wrong:The Power of Mathematical 
Thinking. Penguin Books. At least the discussion

about p-values

This talk is mainly based on the two easiest chapters of 
THIS book. 
The other chapters are quite technical, particularly the ones 
in which I define classes of problems and estimate their 
relative sizes.
Note that the original book is in French. As my wife said “It 
is not my field, so I can’t say anything about the content, 
but the coloured figures are very nice”. 
Unfortunately, in the English version, they are black and 
white.

THIS other book is completely different. Far less technical, 
but, as a reviewer, I would say that you should read it 
before to write your next paper. 
There is a French version, too.
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Thank you for your 
attention!

Now I can close the curtains.

Unless, of course, you have any questions.
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Any question?

Please, speak slowly, clearly 
                 and LOUDLY!

Actually I tried to anticipate some questions, that is why 
there are a few more slides in the Appendix.
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Appendix

For maths addictFor normal guys

* Is Exploration always possible?
* CDF, Qu’es acò?

* Nearer is better

* Difficulty measure

* Success proba vs numberb of runs

* Difficulty vs Dimension

* Counting exploitation points

* Stochastic geometry, a simple example
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Is exploration always 
possible? 

Adding an exploitation 
point recreates “free space”

No way

D-cubes

On this example the exploitation domains are squares.
On the left no exploration is possible any more. The two 
exploitation domains entirely cover the search space.

So we have to cheat a bit and to force an exploration point 
inside an exploitation domain, say the largest one.

And as soon as we do that, free space is generated 
because some exploitation domains are now smaller.
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CDF, Qu'es acò?

CDF is for Cumulative Distribution Function.
It may be not enough to say that, so let’s explain.
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Cumulative Distribution 
Functions (1)

No doubt, Optimiser 1 is better
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100 runs

Optimiser 2: for 50 
runs, the final error 
is smaller than 0.28

Optimiser 1: for 50 
runs, the final error 
is smaller than 0.18

This concept is valid only for stochastic optimisers, not for 
deterministic ones.
On a given problem, you run the optimiser a lot of times, 
and for each final error value you count how many runs can 
be said to be successful, that is giving a result at most 
equal to this error value.
You do that for the two optimisers to compare, and you plot 
the normalised curves.
If one is entirely “above” the other one, then the superiority 
is clear.

However, it is not always the case.
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Cumulative Distribution 
Functions (2)
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back to main slide

If you want results smaller than 0.2  
Optimiser 1 is better (probability 0.55).
The contrary if you are less demanding.

median is not 
pertinent to draw 
any conclusion

As an user, I have a given budget, say a given maximum 
number of evaluations.
So I do not really care of the mean or of the median. 
What I want to know is the probability to find a good 
solution.
But “good solution” is depending on my requirement. Here, 
if  I am satisfied with an error value smaller than 0.3 then 
the optimiser 2 is largely better.

But if I absolutely want a value smaller than 0.2, then the 
optimiser 1 is preferable, even if the corresponding 
probability is only about 50%.
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Nearer is Better

f xb f  xw 

z

z '

xb

xw

Kind of spatial autocorrelationKind of spatial autocorrelation

Improvement is more 
probable 
HERE than HERE

A difficulty measure can be based on the Nearer is Better 
concept. What is it?
The point (xb) is better than this one (xw).
Now, starting from here, we can either go farther from the 
best point (z'), or, on the contrary, nearer to it (z).
The Nearer is Better assumption is that z will  more 
probably improve xw than z'.

I don't go into detail, but this can be formalised. For a given 
function, one can define a correlation coefficient that 
measures how much the assumption is true.

For many many problems, it is true, even for combinatorial 
ones. However, in that case, the correlation is just slightly 
positive.
On the other hand, except for strictly monotonic functions. 
the correlation is smaller than 1.
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Difficulty measures

CEC 2011
Code Name Dimension Difficulty

1 Parameter 
Estimation for 
Frequency 
Modulated Sound 
Waves

6 0.458

2 Lennard-Jones 
Potential Problem

30 0.973

3 The Bifunctional 
Catalyst Blend 
Optimal Control 
Problem

1 0.046

7 Spread Spectrum 
Radar Polyphase 
Code Design

20 0.545

δ¬NisB
*

depending on 
the “Nearer 
is Better” 
probability

back to main slide

For example, by using such a measure, you can evaluate 
how difficult are the problems of THIS well known 
benchmark.

It is sometimes said that the difficulty is linearly increasing 
with the dimension. 
Even with a clear definition of the difficulty, which is not 
always given, this claim is rarely true.
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Difficulty vs Dimension
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Alpine
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GriewankNot linear

Not 
increasing

Decreasing

It is of course wrong when you consider the different 
problems of a benchmark, like HERE.

But it is also wrong when you consider a so called 
“scalable” problem, like Alpine, or Griewank.

In this last case, you may even note that the difficulty is 
decreasing with the dimension. This is because the number 
of local minima indeed increases with the dimension, but 
their sizes are also quickly decreasing, so it is easy to 
escape.
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Probability of success 
vs Number of runs

Probability p 
for one run

1−(1− p)n

Even if the probability of success is low, say 0.1, you can 
increase it if your budget is sufficient. 

Here, after only 7 runs, the probability increases to more 
than 0.7.

Now, how to spend the total allowed budget? 
Should you launch just a few long runs, or many short 
ones?

Or something more sophisticated, like a few short runs first 
and then longer ones?

I don’t elaborate here, but it is possible to define strategies 
that optimise the way you use your budget.
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Stochastic geometry
(Warming up) 1/2

0 1a b

random points

proba (|b−a|≥ 1
2
)=

2 ∫
a=0

1
2

∫
b=a+

1
2

1

(b−a)

2 ∫
a=0

1

∫
b=a

1

(b−a)

=
1
4

acceptable intervals

all intervals

A very classical problem.
a and b are two random numbers (uniform distribution).

What is the probability that the distance between them is 
greater than 0.5?

The nice formula here gives the value, but it is possible to 
guess it, just by looking at a figure
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Stochastic geometry
(Warming up) 2/2

∫
a=0

1

∫
b=a

1

(b−a)

all intervals

acceptable intervals

∫
a=0

1
2

∫
b=a+

1
2

1

(b−a)

0 1/2 1
0

1/2

1

First,  one can consider only the case b greater than a. 

Then, the “volume" of all possible intervals, if I dare say, is 
the grey triangle.

And the volume of all acceptable intervals is given by the 
blue triangle.

Hence the ratio ¼.
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Good points

1 = exploitation 

2 = exploration

3 = questionable
1 

2

3

3

1

3

33
3

1

3

In practice, many optimisers exploit only around one of the k best 
positions found.

With explicit exploitation, different k values modify neither the number of 
exploitation points nor the balance, but do modify the efficiency.

With implicit exploitation, the balance may be modified but not the 
efficiency (for the number of exploitation points is not used to define the 
strategy).

Counting 
exploitation points 

(1/2)

Quite often, not all exploitation domains are taken into 
account, but only the ones of the best points.

In that case, exploration is not any more the logical 
negation of exploitation.

More precisely, with some algorithms, a point can be 
sampled inside a “bad” exploitation domain, and seen as 
exploration, as in fact it is not true.

This can lead the algorithm to a wrong strategy

Of course, this bias also appears when not all positions are 
saved. A point can perfectly be sampled very near to a bad 
one that has been forgotten, and this is often a waste of 
time.
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Counting 
exploitation points 

(2/2)
Alpine 2D

Random search

Counting with 
only the best 
exploitation 
domain

Counting with 
all exploitation 
domains

Counting with 
all exploitation 
domains

Counting with 
only the best 
exploitation 
domain

SPSO 2011APS

Counting with 
all exploitation 
domains

Counting with 
only the best 
exploitation 
domain

APS

With random search, the difference is easy to explain. The 
probability to sample a point inside the only exploitation 
domain of the best point tends to zero, because the size of 
this domain is decreasing. 
Therefore, the balance also tends to zero.

With an adaptive algorithm like APS, the difference is not 
that important. The balance is decreasing, no matter how 
you count the number of exploitation points.

With SPSO, the explanation of the difference is similar to 
the one for random search, because SPSO is not adaptive. 

But for both, APS and SPSO, the behaviour of the 
algorithm is exactly the same, for the number of 
exploitation points is not used to modify the strategy.
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